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Abstract

A power transformer will yield a frequency response which is unique to its mechanical
geometry and electrical properties. Changes in the frequency response of a transformer
can be potential indicators of winding deformation, as well as other structural and elec-
trical problems. A diagnostic tool which can be used to detect such changes is Frequency
Response Analysis (FRA). To date, FRA has provided only limited insight into the under-
lying physical cause of the change. There is now a growing research interest in identifying
the physical change in a transformer directly from its FRA signature. The aim of the
research in this thesis is to support the physical interpretation of FRA through the devel-
opment of a wide-band three phase transformer model. The resulting model can be used
for parameter sensitivity analysis, hence providing greater insight into the effects geomet-
ric change can have on transformer FRA. The research validates the proposed modelling
approach by fitting the model to FRA data, without a priori knowledge of the internal
dimensions, and then quantitatively assessing the accuracy of key geometric parameters.
Finally, the ability of the model to support the interpretation of FRA is demonstrated.
This is achieved by modifying a power transformer to emulate winding deformation and
using the model to detect and quantify the degree of change.
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Chapter 1

Introduction

1.1 History of Transformer Modelling

Modelling of transformers began at the start of the twentieth century. Abetti [9] suggests
that the origins of transformer modelling can be traced back to a 1902 paper by Thomas
[113]. In this paper Thomas observed that the “more abrupt the spark and the greater the
capacity and inductance of the coils, the fewer the number of layers which will become
charged before full terminal potential is reached, and the more severe will be the strain on
insulation”. Thomas’ observation highlighted the need for modelling in order to determine
the surge voltage distribution across a transformer’s windings. In the discussion section
of a paper by Jackson in 1906 [58], Steinmetz argued that at high frequencies a winding
can be considered to respond more like a capacitor than an inductor. Blume and Boyajian
in 1919 [28] considered the influence of a transformer’s mutual and leakage inductance,
the capacitance between adjacent coils, and the capacitance between the winding and
ground. The Blume and Boyajian model is shown in Figure 1.1.

An alternative modelling approach proposed by Abetti in 1953 [8] developed a scale
geometric model of a transformer core and windings. The scale model could be con-
structed such that it was representative of a large power transformer in terms of self and
mutual inductances. However, the scale model could not emulate the capacitive elements
of a power transformer and required the addition of external capacitors throughout the
winding structure. Figure 1.2 shows a version of Abetti’s scaled electromagnetic model
for a single phase 667kVA transformer. This modelling approach had the limitation that
with each variation in design, a new scale model would need to be constructed requiring
non-trivial amounts of time and money [76].

The power of digital computers began to be harnessed in 1956 when McWhirter et
al. determined the impulse voltage stress within a transformer winding using a lumped
parameter model. McWhirter’s group used the computational power provided by an
IBM 650 digital card programmed calculator and an Electronic Associates 16-31R analog
computer [77]. It was not until the late 1970’s that transformer modelling reached a point
considered adequate by industry. However these models were linear and lossless [52].
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Figure 1.1: Early transformer model by Blume and Boyajian [28].

Figure 1.2: Abetti’s 1953 electromagnetic transformer model [8].

In the late 1980’s, early 1990’s, articles by Wilcox et al. developed transformer models
using modal analysis which, unlike previous work, took into account the frequency de-
pendent effects and losses of a transformer core [122, 123, 124, 125]. However it was not
until 1994 that de Leon and Semlyen published the first detailed three phase transformer
model that incorporated non-linear and frequency dependent effects [35, 52].

Power transformer modelling still remains an active research area with over 200 journal
articles published in IEEE on the topic within the last five years (2005 - 2010). With the
continuous evolution of transformer models has also come additional areas of application,
e.g. the interpretation of Frequency Response Analysis, which is discussed in the next
section.
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1.2 Applications of Power Transformer Models

An accurate transformer model is an important tool for use in the study of power trans-
formers. This section discusses a number of practical applications where such models are
utilised.

1.2.1 Winding Transient Analysis

For manufacturers to produce a robust yet cost effective transformer, it is important
to accurately determine the transient voltage stress to which sections of the winding
structure may be exposed. Transient simulation is typically based on the injection of
standardised voltage impulses into a geometrically representative electromagnetic model
of the transformer [76].

1.2.2 System Transient Analysis

Another area of application, and one that is employed by power utilities worldwide, is
the use of transformer models in network transient and fault studies [50]. The utility will
generally employ an electromagnetic transient program (EMTP) to study the complicated
interaction between the various components in their electrical network [114]. In fact this
is an area that is currently receiving much attention due to an increase in the number of
transformer dielectric failures [2]. The Cigre working group A2/C4.39 has been formed to
study the electrical transient interaction between transformers and the power system. One
of this working group’s key objectives is to investigate how high frequency transformer
models used in EMTP can be improved [2].

1.2.3 Partial Discharge Localisation

A partial discharge (PD) is the breakdown of an insulation barrier within a system which
results in an exchange of charge. The continual degradation of an area within the in-
sulation system due to PDs could lead to a complete failure of the insulation integrity.
This could have catastrophic consequences. As a result, there is clearly a need for regular
monitoring of PD activity. The rate of degradation of a dielectric material can be directly
correlated with the dissipated discharge energy. Therefore the use of PD pulse amplitude
monitors has been common practice since the 1960’s [22, 67]. However, a journal article
by R.E. James in 1970 proposed that the terminal measurement of a PD has little value
without knowledge of its originating location due to the possibility of high levels of at-
tenuation within the windings. As a result, a variety of approaches to PD location have
been tried over the years. Modern approaches include electrical modelling [118, 84], as
well as acoustic and radio frequency triangulation [111]. The use of a lumped parameter
electrical model for use in PD localisation is an area that has been investigated by the
author [79, 80].
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1.2.4 Frequency Response Analysis

Frequency response analysis (FRA) is a diagnostic tool which can be used to detect power
transformer winding deformation [40]. It is also used to assess the mechanical condition
after a transformer has been transported from one location to another. An FRA test
involves the injection of a signal into one terminal whilst measuring the response at an-
other. This procedure facilitates the determination of the frequency response “signature”
between the various terminals on the power transformer. Ideally the comparison is be-
tween a recent FRA measurement and a previously recorded measurement for the same
test configuration. However it is also useful to compare measurements of different terminal
combinations on the same transformer, or of transformers of the same design.

There are a number of areas where transformer modelling can be used in conjunction
with FRA. The first area is the need to quantify the degree of change in the frequency
response relative to previously measured FRA data. Currently, this assessment is done
by trained personnel and can be quite subjective due to the human element. The Cigre
A2.26 working group suggests that the assessment process could be automated through
comparison of mathematical models representative of the FRA measurements [6].

The second FRA modelling application is an extension of the first, and is directly
applicable to the Cigre working group A2/C4.39 objectives discussed in Section 1.2.2.
The objective is to use a mathematical model of a transformer which was derived from
its FRA, as a component of the EMTP system model. This approach will improve the
overall system model and assist in understanding the interactions between a transformer
and the network [6].

The third application for FRA modelling, and the focus of this thesis, is the use of a
transformer model as a tool to aid in the physical interpretation of changes in the FRA [6].
The rationale behind this approach is that a change in the geometry of a transformer will
affect physical parameters represented in the transformer model. A sensitivity analysis
of the model parameters could therefore be used to assist in determining the root cause
behind any change in a transformer’s frequency response.

1.3 Types of Transformer Models

Transformer models can generally be classified into one of two categories [116]. The first
is the Black Box modelling approach. The goal of this model is to provide the time
and/or frequency response characteristics relative to the transformer terminals. This
type of model is generated by mathematical techniques in order to obtain an estimate of
a transformer’s transfer function [91]. The Black Box approach does not attempt to take
into account the physical attributes of the transformer under test. The primary concern
is the model accuracy as determined by a mathematical measure. A Black Box model
can be used to accurately quantify the degree of frequency response variation between
different FRA tests[120].
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The second category of transformer model is the physical (or white box) model. A
physical model is designed to emulate the complex electrical relationships that correspond
to the structural and material characteristics of the transformer. This type of model
facilitates a deeper understanding of an observed response, and can be useful in fault
diagnosis [7]. Physical models can be classified as one or a combination of the following
categories.

1.3.1 Transmission Line Model

The switching of gas-insulated switchgear can generate very fast transient over-voltages
(VFTO). VFTOs can have a frequency content well into the megahertz range [72]. A
lumped parameter modeling approach will not suffice at such high frequencies due to
travelling wave effects where the windings behave more like transmission lines. It has
been proposed that at these frequencies the winding conductors can be considered as
waveguides to an electromagnetic wave [100]. As a result, for high frequency applications,
an approach known as multi-conductor transmission line theory (MTL) can be used. MTL
theory treats the entry of each winding junction as multiple parallel transmission lines
where an incident transient is coupled into all paths [68].

1.3.2 Leakage Inductance Model

The windings of a transformer are tightly coupled. At low frequencies where the perme-
ability of the core will still have a significant influence, the self and mutual inductance
terms are nearly equal. As a result, an inductance matrix comprised of a winding’s dis-
tributed self and mutual inductance terms will suffer from ill conditioning which makes
inversion difficult [43]. Leakage inductance represents the difference between the self
and mutual inductance of a winding section [92]. Since leakage inductance can be readily
obtained from short circuit tests, the leakage inductance modelling approach uses the val-
ues determined through short circuit testing to generate the inverted inductance matrix
directly [77].

1.3.3 Principle of Duality Model

The magnetic circuit of a transformer will have a significant influence on its low frequency
response. As a result, for the study of the low frequency response it is important to have
an accurate model of the transformer’s magnetic circuit [128]. To achieve this, a common
modelling approach is to apply the principle of duality as originally introduced by Cherry
in 1949 [33]. The duality model derives an electric circuit based on a transformer’s
lumped parameter magnetic circuit and associated windings [102]. By constructing a
model directly from its magnetic circuit, this approach facilitates the accurate modelling
of the iron core [35].
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1.3.4 Electromagnetic Field Model

The electromagnetic field modelling approach is based on the use of finite element anal-
ysis software to develop a comprehensive, three dimensional, electromagnetic model of a
transformer. This approach is primarily adopted by manufacturers for use in the design
stage of large transformers. An electromagnetic field model is computationally expensive
and for most diagnostic applications it would not be practical [35].

1.3.5 Geometric Resistance Inductance Capacitance Model

This type of model is realised through the combination of self and mutual inductance,
resistance, and capacitance, in order to emulate the electrical behaviour of a transformer’s
geometry. Non-linear and frequency dependent effects associated with a transformer core
and windings can also be included [91]. Due to the physically representative nature
of the model and wide-band accuracy (typically around 1MHz), it is the most widely
adopted approach [93]. The model is useful for the calculation of branch currents and
nodal voltages, and since it is geometrically representative, it is particularly useful for
applications which require fault localisation such as FRA and PD [91]. It is for these
reasons that the research in this thesis is based on this type of model.
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1.4 Problem Statement, Motivation and Objectives

1.4.1 Problem Statement

Fault currents in a power transformer subject the windings and associated mechanical
structure to high levels of mechanical stress. This stress can lead to winding deformation
and hence, potentially, to transformer failure [40]. The winding deformation will result in
subtle changes to the inductive and capacitive relationships of the winding. As a result,
the transformer frequency response is altered and hence can be detected.

Transformer Frequency Response Analysis as proposed by Dick et al. in 1978 [40], is
a commonly used tool for monitoring winding deformation in a power transformer. An
FRA test injects a swept frequency sine wave between terminals of a transformer and
calculates the resulting magnitude and phase response versus frequency. Generally, it is
industry practice for trained personnel to visually compare the frequency response with
historical records, or different phases in the same apparatus, or the same phase on sister
units. Variation of the comparative responses may indicate a geometric change which can
be indicative of structural damage. However, generally there is little understanding of
the actual underlying cause or location of the change.

1.4.2 Motivation

To address the issue of FRA interpretation, the Cigre working group WG A2.26 for the
Mechanical Condition Assessment of Transformer Windings Using Frequency Response
Analysis (FRA), has recommended further investigation [6] to improve FRA interpreta-
tion through,
"Transformer modelling based on geometrical parameters as a means to

support the interpretation and derive a fundamental understanding of

the FRA resonances..."

The research undertaken in this thesis is targeted at the Cigre recommendation by de-
veloping more comprehensive and flexible transformer models that will facilitate improved
interpretation of FRA.

1.4.3 Current State of the Art

A number of researchers have developed detailed physical transformer models for appli-
cation to FRA. Some of the key achievements in this area over the last decade are as
follows:

• In 2000 Islam [56] proposed that an FRA spectrum can be partitioned into three
distinct frequency ranges; low, medium and high. Using a ladder network model
for the high voltage winding, the series capacitance was neglected for the low fre-
quency region and the inductance was neglected for the high frequency region. An
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investigation was then conducted into FRA sensitivity to transformer parameter
change.

• In 2003 Rahimpour et al. [91] proposed a detailed single phase transformer model
in order to diagnose axial displacement and radial deformation. The model included
frequency dependent resistances for dielectric loss as well as winding conductor skin
and proximity effects. Rahimpour et al. [91] assumed that the core losses and con-
tribution to inductance would be negligible above 10kHz. The model parameters
were estimated by both analytical and finite element calculations. They also in-
vestigated a range of FRA connection conditions in order to study the connection
sensitivity.

• In a 2005 Bjerkan et al. [27] proposed a detailed three phase transformer model.
This model included frequency dependent losses due to eddy current effects in the
core and windings, as well as dielectric losses in the insulation. A two dimensional
finite element analysis (FEA) model of the transformer winding was used to deter-
mine parameter values. One of the observations of Bjerkan’s FEA simulation was
that the inductance is still significant at 1MHz. A limitation of the two dimensional
FEA model was the exclusion of three dimensional effects such as the coupling be-
tween phases. As a result the model was not applicable for low frequencies (<10kHz)
[27].

• In 2006 Jayasinghe et al. [61] conducted research on the sensitivity of FRA mea-
surement connections and their ability to detect different types of faults. The work
demonstrated that no individual FRA test connection was best, it was fault depen-
dent. Of all of the FRA tests conducted, the High Voltage End to End FRA test
was the most sensitive to axial bending and the Capacitive Interwinding FRA test
was the most sensitive to axial displacement and radial deformation. The research
concluded by recommending that both End to End and Capacitive Interwinding
FRA tests be conducted to ensure that all of the major fault types, for winding
displacement, would be covered1.

• Articles by Abeywickrama et al. between 2005 and 2008 [12, 13, 14, 16] provided a
comprehensive three phase transformer model which used three dimensional FEA to
derive the electrical model parameters. The model also included frequency depen-
dent effects of the core, windings and insulation. Their model correlated quite well
for frequencies between 100Hz and 1MHz for open circuit and primary to secondary
impedance measurement tests. In [13], Abeywickrama et al. noted the diverging
view amongst researchers regarding the frequency at which the contribution of the
core to the winding inductance can be considered negligible. They proposed [13]
that this frequency was above 1MHz.

1For the sake of clarity, the FRA test connection names used throughout the thesis are as defined in
[6]. The FRA test connections are discussed in detail in Chapter 7.
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1.4.4 Research Objectives

During the course of the review in Section 1.4.3 it was apparent that a number of key
areas are in need of further research. These areas are:

• The frequency at which the contribution of the core to the winding inductance can
be considered negligible.

Recent articles have disagreed on this point with suggestions of 10kHz in [91] and
1MHz in [13, 5]. The researchers [13, 5] have used FEA simulation techniques to
determine this frequency limit. A key objective in this thesis is to determine exper-
imentally how the permeability of a power transformer’s core varies with frequency.
This will provide a practical confirmation of the frequency at which the contribution
of the core to inductance can be considered negligible.

• The estimation of key model parameters without detailed knowledge of a power trans-
former’s internal dimensions.

The latest research almost exclusively uses FEA to determine model parameters
based on detailed knowledge of the internal dimensions of the transformer. These
dimensions are rarely available to utilities or testing authorities due to intellectual
property restrictions imposed by the manufacturer. An objective of this work is to
develop a modelling approach that can estimate key physical parameters without
detailed knowledge of a transformer’s internal dimensions.

• Model fitting to multiple FRA configurations across all terminal permutations.

The research by Jayasinghe et al. [61] highlighted the importance of End to End and
Capacitive Interwinding FRA in order to cover all major fault types. An objective of
this thesis is to develop a flexible modelling platform that can be used for multiple
FRA test configurations and include all the associated terminal permutations of
each test.

• FRA interpretation of winding deformation through parameter change.

The research by Jayasinghe et al. [61] and Karimifard et al. [65] demonstrated
how deformation in transformer windings could be simulated via parameter value
changes in their model. An objective of this thesis is to take FRA interpretation a
step further by replicating a winding deformation in a transformer and then verifying
that particular model parameter estimates would correctly change to reflect the
winding deformation. This objective will demonstrate the physically representative
nature of the transformer model and its potential to support FRA interpretation.

It is the intention of this thesis to address each of the above objectives whilst developing
a comprehensive three phase transformer model that can be used as a platform for the
interpretation of FRA.
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1.5 Thesis Overview

The objective of this thesis is to develop a three phase transformer model based on geo-
metric parameters to facilitate the interpretation of FRA. Furthermore, since the internal
dimensions of a transformer are generally not available due to intellectual property re-
strictions, techniques have been developed to estimate and constrain a number of key
internal parameters to help ensure that the resulting transformer model is physically
representative. To satisfy this objective, the thesis is structured in the following manner.

Chapter 2 presents a brief review of transformer design and modelling to support later
chapters. It includes a discussion on windings, core topologies, transformer vector group
connections, as well as basic transformer modelling theory for both single and three phase
systems.

Chapter 3 experimentally determines the effective permeability bandwidth of a power
transformer, and derives a permeability relationship for use within the transformer model.
This chapter also investigates the effect that FRA test voltage levels will have on the core
permeability. This investigation was necessary in order to confirm the compatibility of
FRA derived from different FRA measurement instruments.

Chapter 4 derives the self and mutual inductance relationships for each winding on
a three phase, double wound, core type transformer. The derivations are based on core
permeability, geometry and dimensions, as well as the number of turns on each winding
and an estimate of the leakage inductance.

Chapter 5 uses knowledge of typical transformer construction strategies in conjunction
with transformer nameplate details, to derive an estimate of the leakage inductance, as
required in the previous chapter.

Chapter 6 derives relationships for winding resistance including both skin and proxim-
ity effects. It also develops relationships for the capacitance between windings, windings
and the core, windings and the tank walls, different phases, as well as across individual
windings and discs. This chapter concludes by combining the resistance and capacitance,
along with the self and mutual inductance developed in previous chapters, into a wide-
band generic phase model, i.e, a model that can be configured to represent the high and
low voltage windings of phase A, B or C, for frequencies ranging from DC up to 1MHz.

FRA testing involves the injection and measurement of signals between various termi-
nals on a transformer. This results in a large number of terminal permutations which need
to be considered during modelling. The generic phase model developed in the previous
chapter provides the flexibility necessary to construct an FRA model which is repre-
sentative of an FRA test on any transformer vector group. On this basis, Chapter 7
develops models for three different types of FRA test conducted on transformers with a
Dyn topology.

It is important that the estimation algorithm used with the models developed in the
previous chapter can converge to a parameter solution set that is not just mathematically
sound, but physically feasible. In order to facilitate this objective, Chapter 8 formulates
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equations to provide initial parameter estimates and tight constraints on several key model
parameters.

To confirm the veracity of the modelling approach developed in this thesis, Chapter 9
applies the models to test data which was obtained from a distribution transformer. The
estimation algorithm determines the transformer parameters by simultaneously fitting
each of the models to its corresponding FRA data set. Several key parameter estimates are
then compared with their physically measured counterparts to demonstrate the modelling
accuracy.

Chapter 9 also demonstrates how the models developed in this thesis could be used
to support the interpretation of FRA. This is accomplished by modifying a distribution
transformer in order to emulate a LV winding deformation, and then applying the pa-
rameter estimation algorithm in order to identify the key parameter changes specific to
the induced fault.

The conclusion to this research is given in Chapter 10 including a summary of the
results achieved and a discussion on future research.

The thesis also includes a number of appendices. Appendix A is a detailed discus-
sion on inductive disparity. It examines how the difference in inductance between phases
together with different vector group and measurement topologies, can produce a signifi-
cantly different frequency response.

Appendix B justifies the assumption that the eddy current losses of the single layer
winding used in Chapter 3 are small relative to core losses.

Appendix C gives a brief overview of Scattering (S) Parameters to expand on a dis-
cussion in Chapter 3.

Appendix D provides the two dimensional finite element analysis models which were
used to benchmark the accuracy of the transformer model estimates for capacitance in
Chapter 9.



12 CHAPTER 1. INTRODUCTION

1.6 Key Contributions

• Demonstrated experimentally that the effective complex relative permeability within
a power transformer core will remain significant beyond 1MHz and is greater than
unity at frequencies beyond 15MHz. When considered in the context of FRA, this
implies that the core’s complex relative permeability needs to be considered across
the entire FRA test spectrum (<10MHz).

• Demonstrated experimentally that an FRA of a power transformer could be consid-
ered as a low field condition where the relative permeability of the transformer core
approaches the initial permeability. This implies that, despite the highly non-linear
nature of the core’s hysteresis curve, there is a degree of independence with respect
to the applied FRA test voltage.

• Developed estimates for the number of turns in each winding, transformer core yoke
and limb dimensions, core cross sectional area, winding conductor cross sectional
area and winding leakage inductance. These estimates are all based on the trans-
former nameplate, routine test data and external tank dimensions. They are used
to place constraints on the parameters in the estimation algorithm such that the
resulting parameter solution set is physically feasible.

• Developed a comprehensive wide-band frequency model of a three phase transformer
for High Voltage Winding End to End Open Circuit, Low Voltage Winding End to
End Open Circuit and Capacitive Interwinding FRA tests.

• Improved the accuracy of parameter estimates through the inclusion of multiple
FRA data sets into the estimation algorithm. In the applied example, nine inde-
pendent data sets produced as a result of End to End and Capacitive Interwinding
FRA tests, were simultaneously used to estimate the model parameters.

• Demonstrated how a physically representative model of a power transformer could
be used to identify winding deformation by looking at the relative change in key
model parameters.

• Illustrated how the inherent inductive disparity between windings and the trans-
former’s vector group will influence the resulting low frequency response.
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Chapter 2

Power Transformers: A Review

2.1 Introduction

This chapter provides a brief review of power transformers. The review begins with basic
nomenclature, standards and definitions that are used throughout the thesis. It then pro-
ceeds to discuss the basics of transformer core construction and the more common core
types found in power transformers. Transformer windings are then described, including
their relative location on the core, common winding types, and typical conductor materi-
als. An overview on insulation and cooling, highlighting the dual role played by mineral
oil, is also provided. Basic transformer modelling is then discussed by introducing an
ideal single phase transformer model. We then consider the effects of flux leakage and
finite permeability. Finally, a single phase model is used to develop per phase equivalent
circuits for the most common three phase transformer vector groups.

This chapter is structured in the following manner. Definitions and referencing used
in the thesis are given in Sections 2.2 and 2.3. Transformer construction is described in
Sections 2.4 through to 2.6. Finally, an overview of single and three phase transformer
modelling is presented in Sections 2.8 and 2.9 with concluding remarks in Section 2.10.

2.2 Power Transformers

A transformer is a static electrical device that uses electromagnetic induction to transfer
power from one circuit to another [52]. Power transformers are an essential component of
a power system which are typically designed to have a 30-40 year operating life [71]. Their
function is to transform voltages to suitable levels between the generation, transmission
and distribution stages of a power system. Power transformers can be classified into three
categories based on their power ratings; small (500 to 7500kVA), medium (7500kVA to
100MVA) and large (100MVA+) [52].
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2.3 Referencing

As there are several international standards for referencing transformer terminal and
vector groups, it is important to establish consistent nomenclature prior to any detailed
discussion. For geographical reasons, we adopt the IEC60076-1 standard.

Throughout the thesis, short hand notation for the high and low voltage windings are
HV and LV respectively.

2.3.1 International System of Units

Unless otherwise stated, the International System of Units (SI) are used for all units of
measure in this thesis.

2.3.2 Phase Referencing

We use A-B-C as the phase reference characters. As is common in all standards, the high
voltage winding is represented by an upper case character and the low voltage winding
by a lower case character. For example, the HV terminals are designated ABC and the
LV terminals, abc.

2.3.3 Generic Referencing

This thesis focuses on transformer modelling for FRA. Taking a High Voltage End to End
FRA as an example1 [6], one test connection permutation is to inject into the HV phase
B terminal and record the response on the HV phase C terminal leaving the HV phase
A and LV phase terminals open circuited. This test would be repeated for the other two
phase permutations. To represent this example in a model, it is convenient to have generic
phase references for the injection, measurement and open circuited terminals. This work
accomplishes this through the use of generic phase referencing. Throughout the thesis the
generic high voltage terminals are designated X-Y-Z, and the corresponding low voltage
terminals are x-y-z.

2.3.4 Vector Group

Table 2.1 lists the transformer winding connections discussed in this thesis and their cor-
responding designator codes. The transformer vector group is the term given to combina-
tions of the designator codes which specify the complete transformer connection topology.
The vector group code also includes one or two digits. These digits specify the phase dis-
placement between the windings and is discussed in the next section.

1FRA test connections are discussed in detail in Chapter 7
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Winding Winding Connection Designator

HV Delta D

LV Delta d

HV Star Y

LV Star y

Table 2.1: IEC60076-1 winding connection designators

Reference Hour Phase Displacement

0 0◦

1 −30◦

6 180◦

11 +30◦

Table 2.2: Clock reference to phase displacement (IEC60076-1)

2.3.5 Phase Displacement

The vector group of a transformer has an effect on the phase displacement between the
high and low voltage windings. The vector group details of a transformer will provide the
necessary information to determine the phase displacement. This information is critical
from a modelling perspective due to inductive disparity which is discussed in Appendix
A.

To indicate the phase displacement between the high and low voltage windings, a
parallel is drawn to an analog clock [53]. The minute hand represents the phase voltage
of the HV winding and is positioned at 12 o’clock. The hour hand represents the phase
voltage for the LV winding. Each “hour” represents 30 degrees phase displacement. As
an example, transformers with a Dyn1 or Dyn11 vector group have a high voltage delta
connection and a low voltage star connection. However, the Dyn1 vector group has a
phase displacement of −30◦ and the Dyn11 vector group has a phase displacement of
+30◦.

Table 2.2 relates the reference hour used in the transformer vector group number to
its associated phase displacement for common power transformer configurations. The
polarity of the phase displacement is dependent upon the terminal connection order.

Note that the vector group number (reference hour) will only be added if it is pertinent
to the discussion.
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2.4 Transformer Core

In this section we discuss the materials used in the construction of a transformer core and
also the different core topologies which are in common use today.

2.4.1 The Core

A transformer utilises the low reluctance path provided by a magnetic core to transfer
energy from one winding to another. To minimise losses within the core, it is typically
constructed from laminated sheets of high grade silicon steel2 [101]. The silicon in the
steel increases resistivity which reduces eddy currents and hence reduces the associated
losses. Silicon also increases the material permeability and reduces hysteresis losses. A
disadvantage of the use of silicon is that it makes the steel harder and more brittle. Due
to this disadvantage the silicon content is typically limited to a maximum of 4.5% to
ensure material workability [53].

The silicon steel laminations are typically cold rolled in order to orientate the steel
grain. This product is referred to as cold rolled grain oriented (CRGO) silicon steel.
This has the effect of making the permeability in the rolled direction significantly greater
than the permeability in the transverse direction [15]. The laminations can be further
treated through laser or mechanical scribing. The scribing of the steel reduces power
loss by introducing surface defects which refine the magnetic domains [119]. Lamination
thickness ranges from 0.23mm to 0.35mm [71]. The choice of lamination thickness is
generally a tradeoff between eddy current losses and transformer manufacturing costs.
Smaller lamination thicknesses result in more laminations to be laid for a given core cross
section which results in increased labour costs.

The saturation level for flux density in the core of a power transformer is approximately
2.0 Tesla [52]. For the transformer to operate efficiently, it is important that the flux
density remain below the B-H curve “knee” (See Figure 2.1). For flux densities above the
“knee”, significantly greater magnetising currents are required for small increases in flux
density. However, operating too far below the “knee” will not utilise the core to its full
potential, and is therefore not cost effective. An example B-H curve is shown in Figure
2.1. Typical peak operating flux densities range between 1.6 and 1.8 Tesla for CRGO
silicon steel [20, 53].

The core is electrically insulated from the transformer’s mechanical structure except
for a single ground point. The ground point provides a path to dissipate accumulated
electrostatic charge. Additional ground points would facilitate circulating currents which
would result in additional power loss and localised heating [53].

2The use of amorphous steel as a core material results in a significant reduction in core losses. However,
due to the brittle nature of the material, manufacture is difficult and as a result its use has been somewhat
limited.
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Figure 2.1: B-H Curve for 3.5% silicon electrical steel at 50Hz (Data from [29]).

2.4.2 Types of Core

There are two main types of core construction used in power transformer manufacture,
the shell and the core form. The shell form of construction provides a magnetic circuit
that encloses the windings, forming a “shell”. A three phase example of the shell form is
shown in Figure 2.2(a). It has the advantage of a better short circuit and transient voltage
response relative to the core form [52]. However, construction is more complex leading
to greater manufacturing costs. As a result, the shell form tends to find application
in large power transformers where severe operating conditions can exist. In the core
form construction, the windings are wound concentrically around the core limbs. This
construction approach is simpler, easier to repair, and has thermal property advantages
over the shell form. As a result, it is the most common construction approach used in
power transformer manufacture [66].

The three phase core form construction can be further divided into three limb and
five limb designs as shown in Figures 2.2(b) and (c) respectively. For the three limb core
design, each limb corresponds to one phase. The magnetic circuit is completed by joining
each limb with a top and bottom yoke. For a balanced three phase system, the sum of
fluxes within the three limb design will always be zero [53].

For very large transformers, transport height restrictions are an important design
consideration. It is in such cases that the five limb core construction finds application.
The provision of the two additional outside limbs provide an alternative flux path that
enables a reduction in the top and bottom yoke cross sectional area. This reduction can
be as much as 50% relative to the limb cross sectional area [53].
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(b)

(c)

(a)

Core

Winding

Core

Core

Winding

Figure 2.2: Three phase transformer core configurations. (a) Shell form, (b) three limb
core form, (c) five limb core form.
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Figure 2.3: Continuously transposed conductor (CTC)

2.5 Transformer Windings

This section reviews the different materials used in the construction of a transformer
winding. It then proceeds to discuss the different winding topologies and their respective
orientation relative to the transformer core.

2.5.1 Conductor Material

A transformer winding consists of an insulated conductor wound around the transformer
core. The conductor material is generally either copper or aluminium. Whilst aluminium
is less expensive and lighter, it requires a larger cross sectional area to carry the same
current as its copper equivalent. As a result, aluminium conductors are not as common
[52].

Copper conductors are typically paper insulated with a rectangular section, although
smaller power transformers may use foil or sheet conductors. The conductors can be
arranged individually or as multiple strands in parallel. In the case of multiple stranding,
voltage differences may induce circulating currents. To minimise this effect it is necessary
to continuously transpose the conductor strands. This conductor topology is referred to
as a continuously transposed conductor (CTC) and is shown in Figure 2.3.

2.5.2 Types of Windings

There are a number of different types of windings used in transformer construction. Their
application is dependent upon the specific current and voltage levels, as well as the type
of core construction. In this section the focus is on disc windings for the high voltage,
and helix and layer based windings for the low voltage.

Disc Winding

An individual disc consists of single or multiple insulated conductors wound concentrically
around one another. The discs are physically adjacent and are electrically connected in
series (see Figure 2.4). Disc windings are commonly used for the high voltage windings
of core form transformers (refer Figure 2.2(b) and (c)).
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Figure 2.4: Common disc winding strategies
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In the event of a large transient voltage, high levels of electrical stress can be experi-
enced in the discs that are closest to the input. By increasing the overall series capacitance
of the winding, the transient voltage distribution is more uniform and therefore places
less stress upon individual discs. An increase in the series capacitance of the winding can
be achieved in a number of ways. One approach is to interleave the turns within the disc.
An alternative approach is to introduce an electrostatic shield between the discs. Both of
these approaches, along with the standard continuous disc topology, are shown in Figure
2.4. In this figure the sequence of turns is indicated numerically.

Helix Winding

The helix winding is constructed by winding insulated conductors in parallel, in a corkscrew
fashion. The number of conductors in parallel can range from a few to over 100 [52]. To
minimise the effects of circulating currents in the parallel conductors, it is necessary to
introduce winding transpositions. This type of winding is typically used for high current,
low voltage applications.

Layer Winding

The layer winding is one of the simplest forms of construction. It involves the continuous
winding of an insulated conductor along the length of the winding cylinder and can include
multiple conductors wound in parallel. This process is repeated to obtain several separate
winding layers.

2.5.3 Winding Location

Double wound power transformers have found widespread application [53]. A double
wound power transformer consists of a high and a low voltage winding on each phase.
The LV winding is typically located closest to the core. The HV winding is then placed
concentrically around the LV winding. These positions are based on two key factors.
The first is the lower level of insulation required to insulate the LV winding from the
earthed core. The second factor is that the transformer taps are typically placed on the
HV winding, and will therefore be more accessible. A cross section of a core limb for a
double wound transformer construction is shown in Figure 2.5.

2.6 Transformer Insulation and Cooling

The insulation system of a power transformer is typically constructed from a combination
of paper and pressboard cellulose material which is immersed in mineral oil. The oil
impregnated cellulose material is low cost and has excellent insulation properties. It is
used to insulate winding turns and is also formed into insulating cylinders and barriers
to separate winding sections from each other, and the earthed core.
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Figure 2.5: Core limb cross section of a double wound transformer.

The mineral oil has a dual purpose. It not only provides a highly effective insula-
tion barrier, but it also facilitates the removal of thermal energy from the transformer.
Convection effects within the transformer tank will generate natural oil circulation which
results in cooling due to the thermal energy in the oil being transferred to the tank walls.
In large transformers, this effect can be supplemented through the addition of oil pumps.
The heat exchange can be further improved by adding external fans and also by increasing
the heat transfer area through the addition of external radiators.

2.7 Transformer Modelling Assumptions

For the purpose of the research in this thesis we focus on small to medium sized power
transformers due to the availability of data and testing facilities for experimental veri-
fication (Section 2.2). As a consequence, the three limb core form design is considered
since it is the most common construction approach for small and medium sized power
transformers [71] (Section 2.4). It is also assumed that the transformer is double wound
with a disc winding on the high voltage side and either a helix or layer based winding on
the low voltage side (Section 2.5).
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Figure 2.6: Basic electromagnetic principles of a single phase transformer

2.8 Basic Single Phase Transformer Model

2.8.1 Ideal Transformer

In order to construct a wide-band frequency model of a power transformer, it is impor-
tant to understand the fundamental relationships. This section develops a model of a
single phase transformer operating at its rated frequency. This background material is
presented here for completeness and also to develop some of the nomenclature that is
used throughout the remainder of the thesis.

With reference to Figure 2.6, the application of a voltage v1 to the primary winding
causes a current, i1, to flow into the primary winding. This current produces a magne-
tomotive force F1 that is proportional to the number of turns of the winding, N1 [89],
i.e.

F1 = N1i1 . (2.1)

Neglecting leakage flux, for the moment, the resulting magnetomotive force produces a
flux Φm in the magnetic core of a transformer. Since Φm links both the primary and
secondary windings, it is referred to as the mutual flux. If v1 is time varying, Φm will
also vary with time and an electromotive force, e1, is induced into the primary winding
such that,

e1 = N1
dΦm

dt
. (2.2)

According to Lenz’s law, the polarity of the induced electromotive force must be in a
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direction such as to oppose the change in flux causing it. In this case, assuming that i1
is increasing with respect to time, e1 has the reference polarity as shown in Figure 2.6.
Since Φm links the secondary winding, an electromotive force e2 is induced. Maintaining
that i1 is increasing with respect to time, the induced electromotive force e2 has a polarity
opposed to the change in flux and produces a current i2 through the load Z [24]. The
electromotive force e2 can now be defined as,

e2 = N2
dΦm

dt
. (2.3)

Combining equations (2.2) and (2.3),

e1

e2
=
N1

N2
. (2.4)

Neglecting copper losses and flux leakage, the transformer voltage to turns ratio relation-
ship is,

v1

v2
=
N1

N2
= ā , (2.5)

where ā is referred to as the transformer turns ratio or ratio of transformation3. With
a current i2 flowing through a winding of N2 turns, an opposing magnetomotive force of
F2 is developed such that,

F2 = N2i2 . (2.6)

The resultant magnetomotive force in the transformer’s magnetic core is the difference
between the opposing magnetomotive forces,

Fm = F1 −F2 . (2.7)

In an ideal transformer, the permeability of the core is assumed to be infinite and the
core assumed to have no losses. Therefore the magnetomotive force required to produce
flux in the core will tend to zero and hence,

F1 = F2 . (2.8)

From (2.1), (2.6) and (2.8), the transformer current to turns ratio relationship is,

i1
i2

=
N2

N1
=

1
ā
. (2.9)

2.8.2 Flux Leakage

In a non-ideal transformer, not all of the magnetic flux generated by a magnetomotive
force F is confined to the core. There is flux leakage around each winding such that some

3Throughout this thesis the transformer turns ratio is designated ā rather than a so as to provide a
distinction between the turns ratio and the low voltage phase A designator.
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Figure 2.7: Single phase transformer with flux leakage

flux bypasses the core and completes its path through the air [101]. The flux leakage of
the primary and secondary windings, ΦL1 and ΦL2 respectively, are shown in Figure 2.7.
Maintaining the reference direction of Figure 2.7, the respective flux linking the primary
and secondary windings is,

Φ1 = Φm + ΦL1 , (2.10)

Φ2 = Φm − ΦL2 . (2.11)

Due to flux leakage, the electomotive force relationships in (2.2) and (2.3) become

e1 = N1
dΦm

dt
+N1

dΦL1

dt
(2.12)

and
e2 = N2

dΦm

dt
−N2

dΦL2

dt
. (2.13)

If the current in winding X is denoted iX , then the self inductance L is given by [89],

L =
Flux linking circuit X due to iX

iX
. (2.14)

The leakage inductance for the primary and secondary windings can therefore be defined
as,
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LL1 =
N1ΦL1

i1
(2.15)

and

LL2 =
N2ΦL2

i2
, (2.16)

where LL1 is the primary winding leakage inductance and LL2 is the secondary winding
leakage inductance.

2.8.3 Finite Permeability

A non-ideal transformer core also has finite permeability [101]. With finite permeability,
the core exhibits reluctance Rm such that the mutual flux flowing within the transformer
core is given by,

Fm = ΦmRm . (2.17)

With reference to Figure 2.7, assuming that the impedance Z is removed such that the
secondary is open circuited, then i2 = 0. In this case the magnetisation current is provided
by the primary alone and is referred to as the primary magnetisation current, im. From
(2.17),

Fm = N1im = ΦmRm . (2.18)

From (2.1), (2.6), (2.7) and (2.18),

N1im = N1i1 −N2i2 . (2.19)

Rearranging (2.19) and incorporating the transformer turns ratio (2.9),

i1 = im +
N2

N1
i2 = im +

i2
ā
. (2.20)

Using (2.14), the primary referred magnetising inductance Lm can be defined as,

Lm =
N1Φm

im
. (2.21)

In a similar fashion, the magnetising inductance could also be referred to the secondary
winding.

2.8.4 Transformer Equivalent Circuit

The primary winding can be considered to have both a leakage inductance (2.15) and a
primary referred magnetising inductance (2.21). In addition, a practical transformer also



2.8. BASIC SINGLE PHASE TRANSFORMER MODEL 29

v2v1
em1 em2

1:

R1 R2
LL2

LL1

Ideal Transformer

im

i a2/i1
i2

a

1

Lm

Figure 2.8: Transformer equivalent circuit

has copper, or i2R, losses in each winding. The primary voltage v1 can be defined in
terms of the voltage drops across each of these elements,

v1 = R1i1 + LL1
di1
dt

+ em1 , (2.22)

where R1 is the primary winding resistance and em1 represents the magnetising electro-
motive force,

em1 = N1
d(Φm)
dt

= Lm
dim
dt

. (2.23)

In a similar fashion, taking into account the reference directions, the secondary winding
equivalent circuit voltage is given by,

v2 = −R2i2 − LL2
di2
dt

+ em2 . (2.24)

With reference to (2.22) and (2.24) it is noted that to model the non-ideal properties of
copper loss and leakage inductance, the ideal transformer model requires series resistance
and leakage inductance. In addition, from equation (2.20), the primary winding current
can be split into two different current branches, a magnetising inductance branch and an
ideal current ratio branch. An equivalent circuit for these effects is given in Figure 2.8.

2.8.5 Simplified Equivalent Circuit

A power transformer core is typically constructed using grain oriented silicon steel lami-
nations. As a result, the core at mains frequency has a high permeability. Due to the high
permeability, the magnetising inductance can be viewed as a large shunt reactance. In
contrast, the series copper loss and leakage reactance parameters are comparatively very
small. Therefore a reasonable approximation can be made to refer the secondary series
parameters to the primary side (or alternatively, the primary series parameters to the
secondary side). This is accomplished by using the voltage and current gain relationships
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of an ideal transformer. From Figure 2.8,

em1

em2
=

N1

N2
= ā

∴ em1 = āem2 . (2.25)

Since the voltage drop across the leakage and loss terms is small relative to the voltage
drop across the magnetising inductance, an approximation to (2.25) is,

v1 = āv2 . (2.26)

As the magnetising current is small relative to the load current, it can be assumed that
im → 0 and from (2.9),

i1 =
i2
ā
. (2.27)

Dividing (2.26) by (2.27),

v1

i1
= ā2 v2

i2

∴ Z1 = ā2Z2 . (2.28)

Hence an impedance on the secondary side can be referred to the primary side by scaling
with the turns ratio squared. This simplifies the transformer equivalent circuit of Figure
2.8 to that of Figure 2.9, where

R = R1 + ā2R2 , (2.29)

LL = LL1 + ā2LL2 . (2.30)
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This equivalent circuit proves useful in the following discussion on per phase equivalent
circuits for three phase transformers.

2.9 Basic Three Phase Transformer Model

This section applies the relationships derived for the single phase transformer model to
that of a three phase transformer operating at its nameplate frequency. The primary
winding is assumed to be the high voltage winding. A positive phase sequence is assumed
throughout these derivations.

2.9.1 Vector Group Gain

Under balanced conditions, a three phase transformer can be considered to be the inter-
connection of three single phase transformers. However, the vector group of a three phase
transformer can influence its voltage and current gain [24]. This section analyses the four
most common vector groups used in double wound three phase power transformers and
discusses the vector group versus gain relationship for each.

Delta-delta (Dd) vector group

For the Dd vector group in Figure 2.10(a), there is a direct inductive coupling between
the primary line to line voltage, vAB, and the secondary line to line voltage, vab. With
reference to (2.5),

vab
vAB

=
Nx

NX
=

1
ā
, (2.31)

where NX and Nx are a generic representation for the number of turns of the primary
and secondary windings respectively. Hence there is a transformer voltage gain from the
primary to the secondary of,

KV =
1
ā
. (2.32)

Similarly, with reference to (2.9), the current gain is,

iab
iAB

=
NX

Nx
= ā , (2.33)

where iAB is the current in the primary winding between terminals A and B and iab is
the current in the secondary winding between terminals a and b. Therefore, the current
gain from the primary to the secondary is,

Ki = ā . (2.34)
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Figure 2.10: Common vector groups used in double wound three phase power transformers
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Star-star (Yy) vector group

The Yy vector group of Figure 2.10(d) also has a direct inductive coupling between the
primary line to neutral voltage, vAN , and the secondary line to neutral voltage, van.

van
vAN

=
Nx

NX
=

1
ā
. (2.35)

As with a Dd connection, the primary to secondary voltage gain of Yy is,

KV =
1
ā
. (2.36)

Similarly, the current gain is,

ian
iAN

=
NX

Nx
= ā , (2.37)

where iAN is the primary winding current and ian the secondary winding current. There-
fore the current gain between the primary and secondary is,

Ki = ā . (2.38)

Delta-star (Dy) vector group

For the Dy vector group, Figure 2.10(b), the primary line to line voltage vAB inductively
couples to the secondary line to neutral voltage van,

van
vAB

=
1
ā
. (2.39)

To find the voltage gain, it is necessary to have the voltages in the same form. Since,

vAB = vAN − vBN =
√

3vAN ejπ/6 , (2.40)

then by substituting (2.40) into (2.39),

van√
3vAN ejπ/6

=
1
ā

(2.41)

∴
van
vAN

=
√

3
ā
ejπ/6 . (2.42)

Hence there is a connection based voltage change and a +30◦ phase shift resulting in a
total voltage gain of,

KV =
√

3
ā
ejπ/6 . (2.43)
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For the current gain of the Dy vector group,

NXiAB = Nxian . (2.44)

The primary delta winding current in terms of the line current is,

iA = iAB − iCA . (2.45)

Taking into account the turns ratio and the coupling between the primary and secondary
windings, (2.45) is equivalent to,

iA =
1
ā

(ian − icn)

=
√

3
ā
iae
−jπ/6 . (2.46)

Therefore the current gain of a Dy connection is given by,

Ki =
ia
iA

=
ā√
3
ejπ/6 . (2.47)

Star-delta (Yd) vector group

In the Yd vector group, Figure 2.10(c), the primary line to neutral voltage of the Star
connection, vAN , inductively couples to the secondary line to line voltage of the delta
connection, vab,

vab
vAN

=
1
ā
. (2.48)

Since,

vab = van − vbn =
√

3van ejπ/6 . (2.49)

Substituting (2.49) into (2.48),

√
3van ejπ/6

vAN
=

1
ā

(2.50)

∴
van
vAN

=
1

ā
√

3
e−jπ/6 . (2.51)

Hence, there is a connection based voltage change and a −30◦ phase shift for the voltage
gain,

Kv =
1

ā
√

3
e−jπ/6 . (2.52)
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Vector Group Voltage Gain (KV ) Current Gain (Ki)

Dd
1
ā

ā

Dy
√

3
ā
ejπ/6

ā√
3
ejπ/6

Yd
1

ā
√

3
e−jπ/6 ā

√
3 e−jπ/6

Yy
1
ā

ā

Table 2.3: Vector group based voltage and current gain for three phase transformers

For the current gain of the Yd vector group,

NXiAN = Nxiab . (2.53)

The delta winding current in terms of the line current is,

ia = iab − ica . (2.54)

Taking into account the turns ratio and the coupling between the primary and secondary
windings, (2.54) is equivalent to,

ia = ā (iAN − iCN )

= ā
√

3iAe−jπ/6 . (2.55)

Therefore the current gain for a Yd vector group is given by,

Ki =
ia
iA

= ā
√

3 e−jπ/6 . (2.56)

A summary of the three phase transformer gains is presented in Table 2.3. An impor-
tant point to note is that the current gain is equal to the inverse of the complex conjugate
of the voltage gain [24],

Ki =
1
K∗V

. (2.57)

2.9.2 Delta to Star Transformation

It is often necessary, for the purpose of model simplification, to convert between a delta
and a star connection. With reference to the delta connection of Figure 2.11,

ia = iab − ica =
vab
ZD
− vca
ZD

. (2.58)
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This can be rearranged such that,

ZD =
vab − vca

ia
. (2.59)

Similarly, with reference to the star connection,

vab = iaZY − ibZY = ZY (ia − ib) (2.60)

and
vca = ZY (ic − ia) . (2.61)

Combining (2.60) and (2.61),

vab − vca = ZY (2ia − ib − ic) . (2.62)

From Kirchhoff’s Current Law, the sum of all currents must be equal to zero, i.e.

ia + ib + ic = 0 . (2.63)

Rearranging (2.63) in terms of ia and substituting into (2.62),

vab − vca = 3iaZY (2.64)

3ZY =
vab − vca

ia
. (2.65)

Equating (2.59) with (2.65),
ZD = 3ZY . (2.66)

From (2.66), it is observed that under balanced conditions a transformation can be made
between delta and star connections. This relationship is an integral part of the per phase
analysis of section 2.9.3.

2.9.3 Per Phase Equivalent Circuit Analysis

Under balanced conditions, it is possible to reduce the complexity of the system model for
various three phase power transformer connections by considering them on a per phase
basis [24]. In this section, a per phase equivalent circuit is developed for each of the four
vector groups considered thus far. For the sake of simplicity, winding resistance losses are
neglected.

Yy vector group

With reference to Figure 2.12, it is apparent that under balanced conditions, each phase of
the Yy vector group can be modeled by a single phase equivalent circuit. By considering
the voltage and current gains of (2.36) and (2.38) and with reference to Figure 2.8, a



2.9. BASIC THREE PHASE TRANSFORMER MODEL 37

a

bc

n

v
ab

v
ca

c b

aia

ic

ib

ZD
ZD

ZD

ZY

ZY ZY

v
ab

iab

ibc

ica

v
bc

v
ca

v
bc

ia

ic ib

Figure 2.11: Delta Star transformation

per phase equivalent circuit can be produced. To be phase non-specific, generic phase
X is utilised. The per phase equivalent circuit for the Yy vector group is presented in
Figure 2.14(d).

Dd vector group

By utilising the Delta to Star impedance transformation from (2.66), under balanced
conditions the delta winding can be converted to a star connection by dividing each
impedance by a factor of 3. The Dd vector group can then be converted into Yy form as
shown in Figure 2.13. Once in this form and taking into account the respective voltage
and current gains from (2.32) and (2.34), each phase can be represented by the equivalent
circuit of a single phase transformer. The Dd per phase equivalent circuit using generic
phase X is shown in Figure 2.14(a).

Dy vector group

The Dy vector group is not as straight forward as Dd and Yy connections. In addition
to the delta to star impedance conversion required for the primary delta winding, there
is also the connection based voltage and current gains of (2.43) and (2.47). The Dy per
phase equivalent circuit is shown in Figure 2.14(b).

Yd vector group

For the Yd vector group, the secondary delta connection is converted to star and the
connection based voltage and current gains are given by (2.52) and (2.56). The Yd vector
group per phase equivalent circuit is shown in Figure 2.14(c).
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Figure 2.14: Per phase equivalent circuit topologies



2.9. BASIC THREE PHASE TRANSFORMER MODEL 41

2.9.4 Simplified per Phase Equivalent Circuit

A simplified per phase equivalent circuit can be developed by referring the secondary
leakage inductance and resistance to the primary side. In the same manner as the single
phase derivation in Section 2.8.5, the voltage and current gains need to be considered.
For the (generic phase) voltage gain,

vxn
vXN

= KV

∴ vXN =
vxn
KV

. (2.67)

For the (generic phase) current gain,

ixn
iXN

= Ki

∴ iXN =
ixn
Ki

. (2.68)

Combining (2.67) and (2.68),

vXN
iXN

=
Kivxn
KV ixn

ZX = Zx

[
Ki

KV

]
. (2.69)

Noting the current to voltage gain from (2.57),

ZX = Zx
1

|KV |2
= Zx|Ki|2 . (2.70)

From (2.70), and with reference to Table 2.3 and Figure 2.14, the secondary leakage
inductance referred to the primary side, L′LX , is now derived for each vector group.

Dd vector group,

L
′
LX = ā2LLx

3
. (2.71)

Dy vector group,

L
′
LX =

(
ā√
3

)2

LLx

= ā2LLx
3

. (2.72)

Yd vector group,

L
′
LX =

(
ā
√

3
)2 LLx

3
= ā2LLx . (2.73)
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Vector Group Lm LL R

Dd
LmX

3
LLX

3
+ ā2LLx

3
RX
3

+ ā2Rx
3

Dy
LmX

3
LLX

3
+ ā2LLx

3
RX
3

+ ā2Rx
3

Yd LmX LLX + ā2LLx RX + ā2Rx

Yy LmX LLX + ā2LLx RX + ā2Rx

Table 2.4: Simplified per phase equivalent circuit elements
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Figure 2.15: Simplified per phase equivalent circuit

Yy vector group,
L
′
LX = ā2LLx . (2.74)

From Figure 2.14 and (2.71), (2.72), (2.73) and (2.74), Table 2.4 presents the combined
primary, and secondary referred, leakage inductance for the respective vector groups.
The table also includes the winding resistance and magnetising inductance. Note that
the resistance relationship is identical to the corresponding leakage inductance. It is clear
from Table 2.4 that the circuit elements are determined by the primary connection since
the circuit elements for the Dd and Dy vector groups are identical, and likewise for the
Yd and Yy vector groups. A simplified per phase equivalent circuit is shown in Figure
2.15.

2.10 Conclusion

This chapter provided a review of power transformer materials and construction. It dis-
cussed the lamination material used in core construction and the most common forms of
core used in modern power transformer design. Transformer windings were then intro-
duced with attention focused on high voltage disc and low voltage helix windings. The
chapter then briefly discussed transformer insulation and cooling arrangements. The lat-
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ter section of the chapter introduced basic modelling of transformers operating at their
nameplate frequency. It began with a single phase ideal transformer and progressed to the
derivation of the per phase equivalent circuits for the most common transformer vector
groups. The per phase equivalent circuit derivations are used in later chapters.
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Chapter 3

Complex Permeability

3.1 Introduction

The manufacture of a core for a modern transformer out of thin, inherently resistive, lam-
inations with anisotropic properties results in a magnetic circuit with high permeability
at mains frequency. This permeability is attenuated with frequency as a result of mag-
netic skin effect [101] caused by induced eddy currents. In this chapter we investigate the
effective bandwidth of core permeability, with a particular focus on the FRA spectrum
(typically <10MHz [109]). We also investigate the effect that variations in the FRA test
injection voltage will have on the core permeability.

This chapter is structured in the following manner. The latest research that has been
conducted in this area is discussed in Section 3.2. Section 3.3 provides theory and a deriva-
tion of the effective complex permeability relationship. Section 3.4 develops a physically
representative model and an estimation algorithm based on the work from Section 3.3.
This model is used in Section 3.5 to accurately fit FRA data and determine quantita-
tive values. Section 3.5 also demonstrates the significance of the core’s permeability at
higher frequencies through comparative testing against an air cored winding. Concluding
remarks are then given in Section 3.6.

3.2 Background

Research to date on geometry based power transformer models has typically neglected
the influence of the core beyond 50kHz [117, 49, 91]. A recent paper by Abeywickrama
[15] extended this frequency range and stated that the effective complex permeability of
the transformer core was significant above 100kHz for FRA testing. A paper by Bjerkan
et al. [26] measured the inductance-frequency relationship up to 600kHz. Work by Tavner
[110] on the coupling of discharge currents in the laminated steel stator core of electrical
machines, showed a complex permeability greater than unity at 10MHz for 0.35mm lami-
nations. The 0.35mm lamination thickness used in Tavner’s work is in the upper range of
the lamination thickness values used in transformer manufacture. By conjecture, complex
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Figure 3.1: One dimensional eddy current model.

permeability should be similarly applicable to transformers at even greater frequencies
for the smaller lamination thicknesses.

3.3 Theory

The aim of this section is to derive a relationship for the effective complex relative per-
meability of a power transformer core.

3.3.1 One Dimensional Analysis of Eddy Currents

The laminations in the core of a transformer have a thickness which is significantly smaller
than their width and length. Furthermore, eddy currents tend to flow close to the con-
ductor surface [107, 12]. As such, eddy currents in a transformer lamination can be
studied in an approximate manner by considering one dimensional current flow as shown
in Figure 3.1.

Faraday’s law for electromagnetic induction is given as,

∇ x E = −∂B
∂t

, (3.1)

where E is the electric field strength and B is the magnetic flux density. Relating the
magnetic field intensity H to the magnetic flux density B using permeability we have,

∇ x E = −µ0µr
∂H
∂t

, (3.2)

where µ0 is the permeability of free space and µr is relative permeability. Next we replace
the electric field strength E with current density J ,

∇ x J = −σµ0µr
∂H
∂t

, (3.3)

where σ represents conductivity. With reference to Figure 3.1, the one dimensional anal-
ysis is performed with the magnetic field applied in the z direction and the induced eddy
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currents flowing in the x direction. This simplifies (3.3) to,

∂Jx
∂y

= σµ0µr
∂Hz

∂t
. (3.4)

Utilising Ampére’s law and neglecting displacement current since we are dealing with
moving charges,

∇ x H = J . (3.5)

Once again utilising the one dimensional model, (3.5) simplifies to,

∂Hz

∂y
= Jx . (3.6)

Differentiating (3.6),
∂2Hz

∂y2
=
∂Jx
∂y

. (3.7)

Substituting (3.4) into (3.7) yields the Diffusion Equation [107],

∂2Hz

∂y2
= σµ0µr

∂Hz

∂t
. (3.8)

This is an important relationship which equates the delay and attenuation in the changing
magnetic field, inside the lamination, to the induced eddy currents. Assuming that the
field is time harmonic [32], the Diffusion Equation can be written as,

∂2Hz

∂y2
= jωσµ0µrHz (3.9)

= γ2Hz ,

where γ is the propagation constant given by

γ =
√
jωσµ0µr . (3.10)

Since we consider only one dimension, the subscript z denoting direction is removed from
H in all further references. Solving for H we have,

H = β cosh (γy) where β is a constant . (3.11)
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With reference to Figure 3.1, the flux in a cross sectional slice 2b∆x is given by,

Φ =
∫ b

−b
µ0µrH ∆xdy

=
∫ b

−b
µ0µr∆xβ cosh (γy) dy

=
2µ0µr∆xβ sinh (γb)

γ
. (3.12)

Solving (3.12) for β,

β =
γΦ

2µ0µr∆x sinh (γb)
. (3.13)

Substituting (3.13) into (3.11),

H =
γΦ cosh (γy)

2µ0µr∆x sinh (γb)
. (3.14)

As the magnetic field intensity is not attenuated at the surface of the lamination (y = b),

H̀ =
γΦ cosh (γb)

2µ0µr∆x sinh (γb)
, (3.15)

where H̀ represents the magnetic field intensity at the surface. The space average mag-
netic flux density B̄ in the z direction relates the flux through the cross sectional slice
as,

B̄ =
Φ

2b∆x
. (3.16)

The effective complex permeability of a lamination is the ratio of the space average flux
density to the surface magnetic field intensity, i.e.

µe =
B̄

H̀
=
µ0µr
γb

tanh (γb) . (3.17)

3.3.2 Lamination Anisotropy and Core Stacking Factor

Typically, modern power transformers use cold rolled grain oriented silicon steel in their
laminations. The grain orientation provides the laminations with anisotropic properties.
Due to these anisotropic properties, the permeability of the lamination in the longitudinal
(rolled) direction is significantly greater than the permeability in the transverse direction
[11]. In addition, though the introduction of joints into a core will result in a reduction
in the overall effective permeability, the mitered overlapping of joints found in modern
transformer construction will keep this effect relatively small [11]. On this basis and in
order to simplify modelling, it is proposed that the core be considered continuous with
magnetic flux restricted to flow in the longitudinal direction within the laminations.

When modelling a transformer core, it is generally not practical to consider lamina-
tions on an individual basis. This then requires a lamination stacking factor k to be
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Figure 3.2: Laminated transformer core; n laminations of 2b thickness with ∆ stacking
excess, observing a magnetic flux density B.

introduced such that the core can be considered as a solid block [71]. With reference to
Figure 3.2, a transformer core can be considered to be comprised of n laminations with
an overall core depth of 2bn+ ∆, where in this case ∆ represents the stacking excess. In
one dimension, the stacking factor k may then be defined as,

k =
2bn

2bn+ ∆
. (3.18)

From [71], the longitudinal effective complex permeability of the core is given by,

µ∗e = k(µe − 1) + 1 ≈ kµe . (3.19)

This approximation is appropriate since lamination stacking factors for silicon steel can
have values in the range of 0.95-0.98 [53]. Since permeability is typically referred to in
its relative form (i.e. divided by µ0), from (3.17) and (3.19), the longitudinal effective
complex relative permeability of a transformer core can be approximated by,

µs ≈
kµr
γb

tanh (γb) . (3.20)

For the sake of brevity, the term effective permeability is used interchangeably with the
term effective complex relative permeability, for µs. In addition, the frequency dependence
of the effective permeability is not explicitly denoted in equations.
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Figure 3.3: (a) Typical B/H magnetization curve for 3.5% silicon steel (Data from [29])
(b) Relative permeability versus magnetic field intensity based on the B/H curve.

3.3.3 Low Field Strength Relative Permeability

Frequency Response Analysis involves the injection of sine waves or an impulse signal into
the windings of the transformer. The amplitude of the injected voltage is generally orders
of magnitude less than the nameplate operating voltage of the transformer. Examples of
the maximum injection voltages used in practice are 1VRMS for the Omicron FRAnalyzer,
2.2VRMS for the HP89410A, 3.5VRMS for the Doble M5100 and M5200 and 7VRMS for the
Doble M5400. These voltages, even at mains frequency, will result in an induced magnetic
field well below the operating “knee” of the B-H hysteresis curve of the core material.
As such, these signals are considered to produce low field conditions. Furthermore, as
the test frequency is increased, the inductive impedance increases, and the influence of
parasitic winding capacitance also becomes apparent. This results in a decrease in the test
current, and hence the associated magnetic field intensity, further reducing the relative
permeability. Figure 3.3 presents a typical B/H curve for 3.5% silicon steel and the
resulting relative permeability versus magnetic field intensity. However, under low field
conditions, the relative permeability (µr) approaches the value of initial permeability (µi),
which is defined as being the relative permeability at zero field strength [63],

µr ≈ µi =
1
µ0

lim
H→0

[
B

H

]
. (3.21)
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Figure 3.4: Real component of the calculated effective permeability at 1MHz versus the
initial permeability for a lamination thickness of 0.23mm, 0.30mm and 0.35mm.

Table 3.1: Initial permeability for several grades of electrical steel. Data from [63].

Electrical Steel Grade µi

BSI A.253, Ferrosil 253, Losil 25 150

Magnesil 300 - 1100

BSI C.86, Ferrosil 86, Transil 86 550

BSI grade 62, Alphasil 62, Unisil 62 1000

Silectron, Hypersil, Transcor 3X 1500

From (3.20) and (3.21) the effective permeability of the core can be expressed, for the low
field condition associated with FRA, as

µs = µ
′
s − jµ

′′
s ≈

kµi
γb

tanh (γb) , (3.22)

where µ′s represents the real and µ′′s the imaginary components of µs.

3.3.4 Effective Complex Relative Permeability of a Power Transformer
at High Frequency

The aim of this section is to demonstrate that the effective permeability of a typical power
transformer core remains significant at 1MHz. This is accomplished by plotting the real
component of the calculated effective permeability at 1MHz versus the initial permeability,
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using (3.22). The results are presented in Figure 3.4. The initial permeability is based
on the typical values given in Table 3.1. A conductivity of σ = 2.1 x 106 S/m was used,
which is representative of common electrical steel grades - Unisil, M-2 through M-6, JIS:
30P105.

For the three lamination thicknesses, the calculated minimum for the real component
of the effective permeability is at least an order of magnitude greater than unity at 1MHz
(Figure 3.4). This implies that the coupling between windings on different phases must
be considered when modelling the transformer at high frequencies.

3.3.5 Relationship between Effective Permeability andWinding Impedance

For a winding of N turns, with a permeability of unity, the inductance can be defined
[89] as,

L0 =
µ0N

2ACS
lc

(3.23)

where lc is the core length and ACS the core cross sectional area. The inductance of a
winding and its associated magnetic losses can be represented as an impedance which
incorporates the effective permeability [103],

Z = jwL
′
+R

′′
(3.24)

= jwL0(µ
′
s − jµ

′′
s ) , (3.25)

where L′ represents the ferromagnetic inductance and R
′′ the magnetic loss resistance.

From (3.24) and (3.25),

L
′

= µ
′
sL0 (3.26)

R
′′

= wµ
′′
sL0 . (3.27)

The relationships in (3.26) and (3.27) provide a convenient method to model the complex
frequency dependent relationship between the transformer windings and the laminated
electrical steel core at frequencies below self resonance. At higher frequencies, capacitance
will need to be taken into account.

3.4 Estimation of Effective Permeability

The aim of this section is to demonstrate in a practical manner, that the effective per-
meability of a transformer core is significant above 1MHz. The approach we take is to
estimate the permeability by fitting a physically representative model, based on the theory
in section 3.3, to FRA data. The model parameters are only estimated up to the self res-
onant frequency such that the inductive contribution dominates the frequency response,
hence the influence of parasitic capacitance can be neglected.
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Figure 3.5: Sub-self resonant inductor model with respect to an FRA winding test.

3.4.1 Sub-Self Resonant Inductor Model

As shown in Section 3.3.5, at frequencies below the self resonant frequency, a winding
can be modeled as a series combination of its inductance and its magnetic loss resistance.
It is assumed that the winding’s DC resistance and eddy current losses, due to skin and
proximity effects, will remain small relative to the losses observed in the core, and hence
can be neglected. Supporting arguments for this assumption are given in Appendix B.
At higher frequencies as the permeability decays, the influence of flux leakage on the
frequency response will increase. To improve the accuracy of the model, an element
representing leakage inductance will complement the inductive contribution to account
for quantitative variation between the winding and core cross sectional areas. The sub-
self resonant inductor model is shown in Figure 3.5 where R′′ represents the frequency
dependent magnetic loss resistance, L′ the ferromagnetic inductance and LL the leakage
inductance. Now,

vOUT (w) =
R

R+R′′ + jw(L′ + LL)
vIN (w) , (3.28)

where R represents the 50Ω FRA termination resistor. The transfer function, with refer-
ence to (3.22) and (3.25), becomes

G(jw) =
vOUT (w)
vIN (w)

=
R

R+ jw(LL + µsL0)
, (3.29)

where

L0 =
µ0N

2ACS
lc

, (3.30)

LL ≈
µ0N

2(Aw −ACS)
lw

, (3.31)

and N = number of winding turns,
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ACS = cross sectional area of laminated core,
Aw = cross sectional area of winding,
lc = length of laminated core,
lw = length of winding.

3.4.2 Estimation Algorithm

To estimate the effective permeability with respect to frequency, a constrained nonlinear
optimisation algorithm is implemented utilising numerical computing software. This al-
gorithm determines the best fit between the proposed model and the FRA data by finding
the parameters that result in the lowest cost. The minimum cost, J , is calculated using
the cumulative residual between corresponding model and data frequency points,

J =

∥∥∥∥∥log10

( Ĝ(jw)
H(jw)

)∥∥∥∥∥
2

, (3.32)

where H(jw) is the observed frequency response and Ĝ(jw) is the estimated transfer
function for the model. Using a priori knowledge of R, L0 and LL, an estimate for the
initial permeability, µi, and conductivity, σ, can be determined by,

[µ̂i, σ̂] = arg min
µi,σ
{J} , (3.33)

where µ̂i represents the estimated initial permeability and σ̂, the estimated conductivity.
Utilising the estimated and given parameters, an estimate of the effective permeability as
a function of frequency can be obtained.

3.5 Experimental Verification

This section experimentally verifies the results developed in the previous sections. In
particular, we demonstrate that:

1. Under FRA test conditions, the relative permeability approaches the initial perme-
ability of the lamination material.

2. The effective permeability is significant at frequencies above 1MHz.

3. The effective permeability is greater than unity at frequencies exceeding 15MHz.

3.5.1 Wide-band Frequency Response Analysis Test Bed

A test bed is used to investigate the effective permeability of a power transformer core
with respect to frequency. It is important that the test bed is representative of a power
transformer under similar test conditions. Recall that the permeability of a transformer
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Figure 3.6: Frequency response analysis test bed.
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Figure 3.7: FRA test of the experimental test bed utilizing the single layer 200 turn
laminated core inductor.

core is governed by the properties of the lamination material and the level of excitation.
To ensure practical relevance to power transformer FRA, 0.35mm laminations (the upper
bound for a typical transformer lamination [71]) are utilised as the core material for the
test bed. The level of excitation induced by a typical transformer FRA test is many orders
of magnitude less than at normal operating conditions. As such, the level of excitation
applied to the test bed is of a similar magnitude to that of a typical power transformer
during an FRA test.

One of the primary goals of the test bed is to constrain its resonant behaviour to
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Figure 3.8: FRA test of the experimental test bed utilizing the single layer 5 turn lami-
nated core inductor.

frequencies above those of interest. This is accomplished through the use of a single layer
winding. The single layer winding possesses no interlayer capacitance and the interturn
capacitance is significantly smaller than the capacitance to ground. As such, it does not
possess the low frequency self resonance feature of multilayer windings. If the distributed
winding to ground and measurement cable shunt capacitances are kept to a minimum, it
is possible to obtain a frequency response that is dominated by the inductive components
for frequencies greater than 1MHz. Figure 3.6 depicts the test bed used for all experiments
in this chapter.

The test bed has two configurations. The first is for frequencies less than 1MHz and
the second is for frequencies equal to or above 1MHz. The configuration details are given
in Table 3.2.

Figure 3.7 shows the veracity of this experimental approach using the 200 turn,
0.35mm laminated core inductor. It is readily apparent that the resonance for this winding
configuration occurs at frequencies greater than 1MHz. Hence, this particular configu-
ration is only utilised for frequencies less than 1MHz. The resonant behaviour observed
in Figure 3.7 is due to the interaction between the distributed inductance and the shunt
capacitances to ground of both the winding and the measurement cables.

Figure 3.8 shows the frequency response for the 5 turn, 0.35mm laminated core in-
ductor. It has a self resonant frequency at 30MHz. The resonant frequency is primarily
influenced by the capacitance between turns, not to ground as in the previous configura-
tion. This is due to the low number of turns on the winding. It is apparent from Figure
3.8 that this configuration is suitable for frequencies up to 15MHz without being unduly
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Frequencies < 1MHz Frequencies ≥ 1MHz

Instrument HP89410A Vector Analyser E5071B Network Analyser

Test cable/s Z0 = 50Ω, 100pF/m Z0 = 50Ω, 79.7pF/m

Number of turns 200 5

Winding length 140mm 4mm

Wire gauge 22 B&S 24 B&S

Winding diameter 90mm

Laminated core length 900mm

Lamination thickness 0.35mm

Core dimension 32× 37mm

Table 3.2: Test bed configuration details.
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Figure 3.9: FRA test of the single layer 200 turn laminated core inductor using several
test voltages (0.5VRMS , 1.0VRMS , 1.5VRMS , 2.0VRMS).

affected by the interturn capacitance.
An inductive response over a large range of frequencies provides an ideal platform to

observe the effective permeability. This approach facilitates direct comparisons between
a core constructed with laminations, typical of a power transformer, and that of an air
cored equivalent, across a large range of frequencies.
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Figure 3.10: Zoomed view of the frequency response of the single layer 200 turn laminated
core inductor using several test voltages (0.5VRMS , 1.0VRMS , 1.5VRMS , 2.0VRMS).

3.5.2 Practical Confirmation of the Low Field Assumption

The relative permeability of a transformer core is governed by its B-H characteristic.
Since the magnetic field intensity is a function of current, an injection voltage of constant
amplitude results in a change of relative permeability with frequency due to the inductive
impedance of the winding increasing. In Section 3.3.3, the conjecture was made that,
due to the small injection voltages used by FRA test equipment relative to the nameplate
voltage, the generated magnetic field intensity could be considered as a low field condition.
That is H → 0, over the FRA spectrum. As such, an assumption is made that the relative
permeability approximates that of the initial permeability and remains relatively constant
across the test frequency range. The validation of this assumption is important from a
modelling perspective as it simplifies the complex non-linear relationship between an
applied test voltage and the resulting relative permeability.

To confirm the low field conjecture in a practical setting, it is necessary to show that
the frequency dependent winding inductance demonstrates a level of independence with
respect to the FRA injection voltage. This is indicative of a constant relative permeability
as per equations (3.21) and (3.22).

Experiments were conducted with a HP89410A vector analyzer using a range of test
voltages from 0.5VRMS to 2.0VRMS . These voltages are representative of those used by
FRA testing authorities in the field. Furthermore, it is important to ensure that the test
bed core is in a demagnetised condition prior to conducting the test. It has been shown
[12] that the magnetic viscosity of electrical steel will reach its steady state condition
after a period of approximately 24 hours. To ensure the validity of the test results, the
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core was left in a de-energised state for a period greater than 24 hours. Experiments were
then conducted in a sequence from lowest to highest injection voltages to ensure that the
resulting core magnetisation level related only to the current test, and was not due to
residual effects.

The experimental results are presented in Figure 3.9. Only very subtle differences in
the frequency response can be observed, hence demonstrating independence with respect
to FRA injection voltages. This is highlighted in Figure 3.10 where the frequency range
has been restricted to show the small differences in magnitude for each injection voltage in
more detail. This supports the assumption that, under FRA testing conditions, relative
permeability will approximate the initial permeability.

Small errors that may be introduced due to this approximation can be minimised by
conducting FRA tests using low amplitude injection voltages. However, there is a trade
off between the low field response and the measurement device sensitivity i.e. acceptable
signal to noise ratio of the frequency response.

3.5.3 Practical Demonstration of High Frequency
Effective Permeability

To confirm that the effective permeability is still significant at 1MHz, an FRA test
was conducted on the 200 turn single layer inductor containing a core constructed from
0.35mm silicon steel laminations. To provide a permeability reference of unity, an iden-
tical test was conducted on the winding in an air cored configuration. To complete the
experiment, a test on the winding with a solid steel core was conducted to demonstrate
the effective permeability tending to unity. The results are presented in Figure 3.11.

In Figure 3.11, it can be observed across all frequencies that the level of attenuation
for the laminated core inductor is significantly greater than that of the reference air core
inductor, despite having an identical winding. This clearly indicates that the effects of
the magnetic core are the dominating factor in the frequency response. The frequency
responses shown in Figure 3.11 support the theoretical results developed in Section 3.3.4.
The laminated core inductor configuration has significantly more attenuation than the air
cored version at 1MHz. This is indicative of a larger inductance which, since the same
winding is used for all tests, corresponds to a permeability greater than unity.

The inductor with the solid steel core demonstrates the impact of magnetic skin effect.
After only a few kilohertz, the skin depth (δ =

√
2/wσµ0µr) is significantly smaller than

the core dimensions, hence the effective permeability tends to unity and essentially follows
the air cored winding frequency response as expected.

3.5.4 Estimation Algorithm for the Effective Permeability

In Section 3.4 an estimation algorithm was proposed in order to fit a sub-self resonant
inductor model to FRA data. Using the test configuration shown in Figure 3.6, with
test frequencies not exceeding 1MHz, FRA data was recorded. To accommodate material
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Figure 3.11: FRA test of the 200 turn single layer inductor with an air core, solid steel
core and a laminated electrical steel core (0.35mm laminations).

dependent variation in the conductivity for silicon steel (M235-35: σ = 1.69 × 106 S/m,
Ferrosil 86: σ = 1.82×106 S/m, JIS 30P105: σ = 2.1×106 S/m), a constraint was placed
on the conductivity parameter in the parameter estimation algorithm. The lower and
upper constraints were set to σL = 1.5× 106 S/m and σH = 2.1× 106 S/m respectively.
The stacking factor was assumed to be k = 0.95. In conjunction with the test bed data
specified in Table 3.2, the initial permeability and conductivity are estimated by the
minimisation of the accumulated residual error between the frequency response of the
model and the FRA data.

From (3.23) and with reference to Table 3.2,

L0 =
µ0N

2ACS
lc

= 66× 10−6 H . (3.34)

By considering the leakage inductance to be proportional to the difference in cross sec-
tional area between the winding and the core, we can approximate the leakage inductance
to be,

LL ≈
µ0N

2(Aw −ACS)
lw

= 1.9× 10−3 H , (3.35)

where Aw is the winding cross sectional area. From (3.10) and (3.21) the propagation
constant can be found in terms of the initial permeability,

γ ≈
√
jωσµ0µi . (3.36)
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Substituting (3.36) into (3.22), noting that lamination thickness is equal to 2b,

µs ≈
kµi
γb

tanh (γb) . (3.37)

Finally substituting (3.34), (3.35) and (3.37) into (3.29), the winding model transfer
function is,

Ĝ(jw) =
50

50 + jw

[
0.0019 + 0.36µi

γ tanh
(
1.8× 10−4 × γ

)] . (3.38)

The transfer function (3.38) is utilised in the algorithm as described in Section 3.4.2 using
the cost function (3.33). The estimated values for µi and σ are 835 and 1.72 × 106 S/m
respectively. The resulting frequency response of the model (3.38) and the recorded FRA
data is presented in Figure 3.12. As observed in this plot, the estimated model response
is quite accurate in both magnitude and phase for four decades of frequency. This degree
of accuracy supports the modelling approach and provides the necessary confidence in
the estimated effective permeability (refer to Figure 3.13). From Figure 3.13, the value
of the effective permeability at 1MHz is µs = 33− 33j. Based on this estimate, it can be
concluded that there exists an effective permeability over thirty times greater than unity
at 1MHz for a lamination thickness of 0.35mm. As previously discussed, this lamination
thickness is typically the largest used in power transformer manufacture [71], hence even
larger permeabilities would be obtained for smaller lamination thicknesses.

It should be noted that the effective permeability observed at high frequency is not
large in comparison with the permeabilities observed under normal operating conditions
at mains frequency. However, these values are significant when considering the subtleties
involved in frequency response analysis and the associated coupling between windings of
a three phase transformer.

3.5.5 Achieving an Effective Permeability of Unity

At frequencies greater than several megahertz, the measurement equipment itself becomes
influential in the FRA test. The measurement cables, potentially several metres in length,
can have a distributed capacitance of 100pF/m. In addition, the dimensions of the trans-
former windings under test are such that transmission line effects will not be negligible.
As testing frequencies increase above a couple of megahertz the usefulness of FRA testing
becomes questionable and it becomes more difficult to accurately record and assess. The
recommended diagnostic range for a Doble M5400 FRA test device is 20Hz - 2MHz [3].
However, in order for this investigation to be rigorous, experiments were conducted to
locate the frequency at which the effective permeability of a silicon steel core with 0.35mm
laminations approaches unity.

To achieve this without self resonant interference and to minimise transmission line
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Figure 3.12: Sub-self resonant inductor model fitting to FRA data of the 200 turn single
layer inductor. Test voltage of 1.5VRMS .
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Figure 3.13: Estimated effective permeability based on the sub-self resonant inductor
model fitting; u′ (real component) and u′′ (imaginary component).

effects, the test bed with five single layer turns was used. The test was conducted using an
Agilent E5071B Network Analyser in the same configuration as shown in Figure 3.6. The
use of the network analyser facilitates a testing platform capable of taking into account the
measurement equipment and associated high frequency transmission line effects. It does
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Figure 3.14: High frequency FRA tests on the 5 turn single layer inductor with an air
core and a laminated electrical steel core.

this by characterising the winding under test in terms of incident and reflected waves,
and determining the associated scattering parameters [74]. An overview of scattering
parameters is provided in Appendix C.

An experiment was conducted to determine the forward voltage gain scattering pa-
rameter [74] which represents the high frequency transfer function. The high frequency
response for the test winding is shown in Figure 3.14.

The results in Figure 3.14 quantitatively demonstrate that the laminated core winding
has a larger inductive impedance than the corresponding air cored winding, at frequencies
exceeding 15MHz. As all the other parameters are equal, the effective permeability must
also be greater than unity at frequencies larger than 15MHz. It should be noted that
the frequency where the effective permeability reaches unity would be even higher for the
smaller lamination thicknesses (<0.35mm) used in power transformer manufacture.

3.6 Conclusion

In this Chapter it has been shown that an FRA test on a power transformer should be
considered a low field condition where the relative permeability approaches the initial per-
meability. The relative permeability remains approximately constant across the frequency
spectrum for a fixed amplitude injection voltage despite the highly non-linear nature of
the hysteresis characteristic. This results in a degree of independence with respect to the
applied FRA test voltage. The research validated this assumption by performing FRA
tests on a winding using a range of injection voltages. The results showed only very small
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differences between the frequency response at each voltage. The Chapter also showed
that the effective complex relative permeability for a power transformer remains signif-
icant for frequencies exceeding 1MHz. This was demonstrated by comparing the level
of inductive attenuation at 1MHz for a winding with and without the laminated core.
A model was also fitted to the frequency response of the winding to confirm the theo-
retical conjectures. Finally, for experimental rigor, the frequency response of a winding
using the 0.35mm laminations, was compared to an air cored version to demonstrate that
an effective complex relative permeability of unity occurred at a frequency greater than
15MHz.
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Chapter 4

Self and Mutual Inductance

4.1 Introduction

This chapter derives relationships for the self and mutual inductance between each of the
windings of a three phase, double wound, core type transformer. Each of the relationships
are in terms of the physical dimensions of the transformer core, the number of winding
turns, effective permeability and leakage inductance. These relationships are integrated
into the transformer model developed in Chapter 6.

This chapter is structured in the following manner. Section 4.2 discusses the different
approaches used to model the mutual coupling between windings. Section 4.3 introduces
the equivalent magnetic circuit and associated relationships for a three limb core type
transformer. Section 4.4 derives the self inductance relationships of each winding. Sec-
tion 4.5 derives relationships for the mutual inductance between each winding. Inductive
disparity is discussed briefly in Section 4.6 and a transformer inductance matrix is for-
mulated in Section 4.7. Concluding remarks are then given in Section 4.8.

4.2 Background

At its nameplate frequency, a power transformer performs close to the ideal, with mea-
sured losses in the order of 0.5% with respect to its power rating, and leakage flux losses
in the vicinity of 5% relative to the mutual flux [24]. However at higher frequencies, for
example during FRA testing, the permeability of the core will reduce and this will have
the effect of increasing the influence of the flux leakage path. It is therefore important
that flux leakage is also incorporated into a wide-band frequency transformer model.

There are several different methods used to model the mutual coupling of windings.
The coupling coefficient model is used in simple two winding applications. This technique
utilises a coefficient of coupling factor between zero and one to represent the degree of
coupling between each of the windings. However, this approach does not model the
inherent geometry of a transformer’s magnetic circuit. Furthermore, it is not possible to
use the coupling coefficient approach to model more than two coupled windings [44].
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Figure 4.1: Magnetic equivalent circuit of a three phase two winding core type transformer

The most common approach taken for transformer modelling is known as the reluc-
tance model. This modelling approach is physically representational, utilising a magnetic
circuit based on the geometry of the transformer core. In the magnetic circuit, each
winding is replaced with a magnetomotive source and each flux path, including those rep-
resentative of leakage, with a corresponding reluctance. It is common practice in transient
studies to utilise the principle of duality that exists between the electric and magnetic
circuits [33, 86], i.e. to convert the magnetic circuit to its electric dual [75, 34]. Since
this research is primarily concerned with the distributed interaction of parameters, the
approach taken here is to use a combination of the magnetic circuit and its electric circuit
dual.

The relationships derived in this chapter are based on a core type transformer with
concentric windings. The leakage inductance is assumed to be restricted to the axial path
between the high and low voltage windings (to be discussed in Chapter 5). The model
is based on a single phase injection test, e.g. FRA, and therefore neglects the influence
of zero sequence elements. Furthermore it is assumed that there is no indirect coupling
between windings due to leakage flux.

4.3 Magnetic Circuit

The magnetic circuit proposed for the purpose of understanding the self and mutual
inductance is shown in Figure 4.1. In this figure, FA represents the magnetomotive force
(mmf) due to the high voltage winding of phase A, Fa the mmf due to the low voltage
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winding on phase A and so forth for the other phases. RE is the core limb reluctance, RY

is the core yoke reluctance and RL is the winding leakage flux reluctance. The dimensions
of the core are lE for the mean limb length and lY for the mean yoke length.

With reference to (2.1), the magnetomotive forces for the high and low voltage wind-
ings are,

FA = NXiA (4.1)

FB = NXiB (4.2)

FC = NXiC (4.3)

Fa = Nxia (4.4)

Fb = Nxib (4.5)

Fc = Nxic , (4.6)

where NX and Nx represent the number of turns on the high and low voltage windings
respectively, iA the current in the HV winding phase A, ia the current in the LV winding
phase A, and similarly for the B and C phases.

The reluctance of the core can be defined in terms of the mean path length l, core
cross sectional area ACS , and the core permeability µ such that,

R =
l

µACS
. (4.7)

For a three limb core transformer, the cross sectional area of the core can be assumed to
be the same across all core sections [53]. In addition, the core permeability is a frequency
dependent relationship that can be assumed to be approximately uniform throughout the
core (Chapter 3 (3.22)). With reference to (4.7), it is observed that the reluctance is
dependent upon the dimensions and layout of the physical magnetic circuit, and hence,
RE and RY are directly proportional to the limb and yoke length,

RE =
[

1
µACS

]
lE , (4.8)

RY =
[

1
µACS

]
lY . (4.9)

The leakage reluctance, RL, is discussed in Section 5.4.

4.4 Winding Self Inductance

In this section we determine the self inductance of the windings relative to the core linear
dimensions, cross sectional area and permeability. It is noted from the magnetic circuit
model of Figure 4.1, that the windings on the two outside limbs, phases A and C, share
common symmetry. As such, throughout this Chapter, windings on phases A and C with
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equal turns are assumed equivalent. On this basis, derivations are only required for the
A and B phase relationships.

4.4.1 Self Inductance

Self inductance is defined as [89],

LX =
Flux linking winding X due to iX

iX
, (4.10)

where LX is the self inductance of winding X and iX is the associated winding current.
This can be rewritten, taking into account flux linkage due to NX turns as,

LX =
NXΦX

iX
, (4.11)

where the winding observes a flux of ΦX . From the definition of magnetomotive force
[89],

FX = NXiX = RX ΦX (4.12)

Substituting (4.12) into (4.11),

LX =
N2
X

RX
. (4.13)

From (4.13), it is noted that the self inductance is dependent upon the reluctance observed
by the winding X.

4.4.2 Self Inductance of the Outside Limb Winding

Using superposition to determine the observed reluctance of a particular winding, the
mmf sources of all of the other windings are short circuited. Figure 4.2(a) shows the
magnetic circuit for the reluctance of a winding wound on the outside limbs, i.e. phases
A and C. This circuit consists of a winding leakage path RL, and the magnetic path
around the core consisting of a combination of limb and yoke reluctances, RE and RY .
By simplifying the magnetic core path to a single value RMA, the resulting reluctance of
the winding can be considered as a magnetic core and leakage parallel path as per Figure
4.2(b),

RA = RMA‖RL

∴ RA =
RMARL

RMA +RL
, (4.14)
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Figure 4.2: Magnetic circuit transformation of a winding on the core’s outside limb. (a)
Magnetic circuit based on core geometry. (b) Simplified magnetic circuit. (c) Duality
based equivalent electrical circuit.
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where RA is the reluctance observed by a winding on an outside limb. This result is
consistent for both the high and low voltage windings. From (4.8) and (4.9),

RMA =
[

1
µACS

][
lE + lY + lE‖ (lE + lY )

]

=
[

1
µACS

] [
lE + lY +

(
lE (lE + lY )

2lE + lY

)]

∴ RMA =
[

1
µACS

] [
(lE + lY ) (3lE + lY )

2lE + lY

]
. (4.15)

From (4.13) and (4.15), the core component of self inductance for the high voltage winding
on the outside limb, LMAA, can now be determined,

LMAA =
N2
X

RMA

=
N2
X[

1
µACS

] [
(lE+lY )(3lE+lY )

2lE+lY

]
∴ LMAA =

µACSN
2
X (2lE + lY )

(lE + lY ) (3lE + lY )
. (4.16)

Each of the high voltage windings can be assumed to have the same number of turns, the
generic term NX is employed. Similarly, for the core component of self inductance for
the low voltage outside limb winding, employing Nx for the number of turns on the low
voltage winding,

LMaa =
µACSN

2
x (2lE + lY )

(lE + lY ) (3lE + lY )
. (4.17)

Taking into account the transformer’s turns ratio (2.5), (4.17) can then be simplified to,

LMaa =
LMAA

ā2
. (4.18)

The leakage reluctance is assumed equivalent for both the high and low voltage windings1,
hence from (4.13),

LLA =
N2
X

RL
(4.19)

LLa =
N2
x

RL
(4.20)

where LLA is the high voltage outside limb winding leakage inductance, and LLa is the
corresponding low voltage outside limb winding leakage inductance. Hence from (4.19)
and (4.20), a relationship for the leakage reluctance in terms of the corresponding leakage

1This assumption is justified in Section 5.4
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inductance and winding turns is,

RL =
N2
X

LLA
=

N2
x

LLa
. (4.21)

From (4.13), (4.14) and (4.19), the self inductance of the high voltage outside limb wind-
ing, LAA, is given by,

LAA =
N2
X

RA

= N2
X

RMA +RL

RMARL

=
N2
X

RL
+

N2
X

RMA

∴ LAA = LLA + LMAA . (4.22)

Similarly, for the self inductance of the low voltage outside limb winding, Laa,

Laa = LLa + LMaa . (4.23)

This result indicates that the self inductance of a winding on the outside limb can be con-
sidered as the series combination of the winding’s leakage and magnetic core inductance.

With reference to Figure 4.2(b), the same result can also be achieved through the
implementation of the principle of duality [33]. The electrical dual is found by replacing
the magnetic mesh circuits with their nodal electrical equivalents. This is accomplished
by placing a reference node inside each magnetic circuit loop, (i) and (j), and an additional
reference node outside the circuit, (k). Lines are then drawn between any two nodes of the
magnetic circuit that pass through a single circuit element. The electrical equivalent joins
the reference nodes and replaces each element with its dual; reluctance with inductance,
mmf with current. The electrical dual of the magnetic circuit is shown in Figure 4.2(c)
indicating the series combination of the leakage and magnetic core inductance as per
(4.22) and (4.23).

4.4.3 Self Inductance of the Centre Limb Winding

In a similar manner, the self inductance of the centre limb of the transformer core can be
derived. For the reluctance of the core, from (4.8) and (4.9) and with reference to Figure
4.3(a),

RMB =
[

1
µACS

][
lE + (lE + lY ) ‖ (lE + lY )

]

=
[

1
µACS

] [
3lE + lY

2

]
(4.24)

From (4.13) and (4.24), the core component of self inductance for the high voltage centre
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Figure 4.3: Magnetic circuit transformation of a winding on the core’s centre limb. (a)
Magnetic circuit based on core geometry. (b) Simplified magnetic circuit. (c) Duality
based equivalent electrical circuit.
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limb winding is given by,

LMBB =
N2
X

RMB

=
N2
X[

1
µACS

] [
3lE+lY

2

]
∴ LMBB =

2µACSN2
X

3lE + lY
. (4.25)

Similarly, for the low voltage centre limb winding, the core’s contribution to the self
inductance is,

LMbb =
2µACSN2

x

3lE + lY
. (4.26)

Taking into account the transformer turns ratio, (4.26) can be rewritten as,

LMbb =
LMBB

ā2
. (4.27)

The centre winding’s electrical dual, Figure 4.3(c), is once again just the series com-
bination of the leakage inductance and the core’s contribution to the respective self in-
ductance. For the high voltage winding this is,

LBB = LLB + LMBB , (4.28)

where LBB is the self inductance of the high voltage centre limb winding and LLB is
the leakage inductance of the high voltage centre limb winding. Similarly, for the self
inductance of the low voltage centre limb winding, Lbb,

Lbb = LLb + LMbb , (4.29)

where LLb is the leakage inductance of the low voltage centre limb winding.
Self inductance relationships have now been derived for each of the associated windings

of a core type transformer. The derivations take into account leakage loss and core path
length variation.

4.5 Winding Mutual Inductance

In this section we derive mutual inductance relationships for both the HV and LV windings
of the transformer. The derivations are divided into two categories, those sharing the same
transformer core limb, which are classified as intraphase mutuals, and those on separate
transformer core limbs, classified as interphase mutuals. These categories include both
high and low voltage winding variants and the resulting derivations are in terms of the
core linear dimensions, cross sectional area and permeability. As with self inductance, the
windings of phase A and phase C are considered interchangeable due to the symmetrical
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nature of the core. On this basis, only derivations for phase A and B are considered.
The mutual inductance between two winding sections is defined as being the flux

linking one winding due to the current in another. This can be expressed mathematically
[89] as,

LXZ =
Flux linking winding Z due to iX

iX
, (4.30)

where LXZ is the mutual inductance between generic windings X and Z. This can be
rewritten, taking into account the flux linkage of winding Z due to NZ turns as,

LXZ =
NZΦXZ

iX
, (4.31)

where ΦXZ is the flux linking winding Z due to current in winding X. To determine the
degree of mutual coupling between two windings it is necessary to determine the amount
of flux received by a winding relative to the current generating the flux of the other.

4.5.1 Intraphase Mutual Inductance

For the intraphase mutual inductance, a derivation of the mutual inductance between the
high and low voltage windings that share a common core limb is required. This category
is subdivided into two areas, windings on the outside limbs and windings on the centre
limb.

Outside Limb Windings

From (4.31), we consider the flux linking the low voltage winding of phase A due to
current in the high voltage winding. With reference to the magnetic circuit model of
Figure 4.4(a), the low voltage winding shares the same magnetic core flux as the high
voltage winding, ΦMA. From (2.17),

ΦMA =
FA
RMA

=
NXiA
RMA

, (4.32)

where FA is the high voltage winding magnetomotive force due to a current iA, and RMA

is the observed core reluctance defined in (4.15). From (4.15) and (4.32),

ΦMA =
NXiA[

1
µACS

] [
(lE+lY )(3lE+lY )

2lE+lY

]
∴ ΦMA =

µACSNXiA (2lE + lY )
(lE + lY ) (3lE + lY )

. (4.33)

From Faraday’s law, the magnitude of an induced voltage on a winding due to a changing
flux is defined as,

vk = −Nk
dΦk

dt
, (4.34)
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Figure 4.4: Magnetic circuit for intra-phase mutual inductance. (a) High voltage phase
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where Φk is the flux through Nk turns of winding k, resulting in a voltage across the
winding of vk. Applying Faraday’s law, (4.34), to (4.33),

va = −Nx
dΦMA

dt

= −Nx
d

dt

[
µACSNXiA (2lE + lY )

(lE + lY ) (3lE + lY )

]

= −µACSNxNX (2lE + lY )
(lE + lY ) (3lE + lY )

diA
dt

, (4.35)

where va is the induced voltage on the phase A low voltage winding due to the flux
generated by the phase A high voltage winding. Equation (4.34) can be rewritten as,

vk = Lk
dik
dt

, (4.36)

where Lk is the inductance of winding k. From (4.35), it can be deduced that,

LMAa =
µACSNxNX (2lE + lY )

(lE + lY ) (3lE + lY )
, (4.37)

where LMAa is the mutual inductance between the high and low voltage windings on the
outside limb of a core type transformer. By extension, the same result is obtained from
the perspective of the mutual inductance for the low to the high voltage winding,

LMaA = LMAa . (4.38)

These results can be equally applied to phase C.

Centre Limb Windings

With reference to the magnetic circuit model of Figure 4.4(b), the low voltage winding
shares the same magnetic core flux as the high voltage winding, ΦMB. From (2.17) and
(4.24),

ΦMB =
FB
RMB

=
NXiB[

1
µACS

] [
3lE+lY

2

]
∴ ΦMB =

2µACSNXiB
(3lE + lY )

. (4.39)
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From Faraday’s law, (4.34),

vb = −Nx
dΦMB

dt

= −2µACSNxNX

(3lE + lY )
diB
dt

, (4.40)

where vb is the induced voltage on the phase B low voltage winding due to the flux
generated by the phase B high voltage winding. Noting the inductance of (4.36), the
mutual inductance can be determined from (4.40) to be,

LMBb =
2µACSNxNX

(3lE + lY )
, (4.41)

where LMBb is the mutual inductance between the high and low voltage windings on the
centre limb of a core type transformer. By extension, as with the outside limb relationship,
the mutual inductance from the low voltage winding to the high voltage winding, LMbB,
is the same as (4.41),

LMbB = LMBb . (4.42)

4.5.2 Interphase Mutual Inductance

For the interphase mutual inductance, a derivation of the mutual inductance between
windings on different limbs is required. This category is also subdivided into two areas.
The first area is the mutual inductance between windings on opposite outside limbs, i.e.
between phases A and C. The second is the mutual inductance between an outside limb
winding and a centre limb winding, e.g. phases A and B. Both categories consider all
combinations of high and low voltage windings.

Outside Limb Windings

To determine the mutual inductance that exists between windings on opposing outside
limbs, the high voltage windings of phases A and C are considered initially. The results
are then extended to the various high and low voltage winding combinations of the two
phases.

With reference to the magnetic circuit model of Figure 4.5(a), the magnetic core flux
generated by the magnetomotive force FA, as derived in (4.33), is,

ΦMA =
FA
RMA

=
µACSNXiA (2lE + lY )

(lE + lY ) (3lE + lY )
. (4.43)

The proportion of the flux ΦMA linking the high voltage winding of phase C, can be
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determined by flux division based on the associated path reluctance,

ΦMAC =
RE

RE + (RE +RY)
ΦMA

=
RE

(2RE +RY)
ΦMA . (4.44)

Since the core is considered to have a uniform cross sectional area and permeability, (4.44)
can be rewritten in terms of core path length,

ΦMAC =
lE

(2lE + lY )
ΦMA . (4.45)

Substituting (4.43) into (4.45),

ΦMAC =
lE

(2lE + lY )
µACSNXiA (2lE + lY )

(lE + lY ) (3lE + lY )

∴ ΦMAC =
µACSNXiAlE

(lE + lY ) (3lE + lY )
. (4.46)

From Faraday’s law, (4.34), the voltage of the high voltage phase C winding based on a
flux of (4.46) is,

vC = −NX
dΦMAC

dt

= −NX
d

dt

[
µACSNXiAlE

(lE + lY ) (3lE + lY )

]

∴ vC = −
µACSN

2
X lE

(lE + lY ) (3lE + lY )
diA
dt

, (4.47)

where vC is the induced voltage across the high voltage phase C winding. We can now
obtain the inductance component of (4.47),

LMAC = LMCA =
µACSN

2
X lE

(lE + lY ) (3lE + lY )
, (4.48)

where LMAC and LMCA are the mutual inductances between the high voltage phase A
and C windings. Note that LMAC = LMCA due to the symmetry of phases A and C.

By extension, the results from (4.48) can be replicated for the low voltage winding by
simply substituting the low voltage turns, Nx for the high voltage turns, NX ,

LMac = LMca =
µACSN

2
x lE

(lE + lY ) (3lE + lY )
, (4.49)

where LMac and LMca are the mutual inductances between the outside limb low voltage
windings.

The interphase mutual inductance relationships between the high and low voltage
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windings can be similarly derived. Applying Faraday’s law to determine the induced
voltage on the phase C low voltage winding due to the high voltage phase A winding
generated flux, (4.34) and (4.46),

vc = −Nx
dΦMAC

dt

∴ vc = − µACSNxNX lE
(lE + lY ) (3lE + lY )

diA
dt

, (4.50)

where vc is the induced voltage on the low voltage phase C winding. Hence, from (4.50),
the mutual inductance between a high and low voltage winding on opposite outside limbs,
is given by,

LMAc = LMaC = LMCa = LMcA =
µACSNxNX lE

(lE + lY ) (3lE + lY )
. (4.51)

Outside and Centre Limb Windings

In this section we determine the mutual inductance that exists between the outside and
centre limb windings. The derivation initially focuses on the high voltage phase A and
B windings, and then extends to the high and low voltage winding combinations of the
these two phases.

As discussed in Section 4.5.2, the proportion of the flux ΦMA linking a winding of
another phase can be determined by flux division based on the associated core path length.
With reference to Figure 4.5(b) and (4.43), for a winding on phase B the associated flux
ΦMAB is,

ΦMAB =
lE + lY

lE + (lE + lY )
ΦMA

=
lE + lY

(2lE + lY )
µACSNXiA (2lE + lY )

(lE + lY ) (3lE + lY )

∴ ΦMAB =
µACSNXiA
(3lE + lY )

. (4.52)

Applying Faraday’s law, (4.34), to the high voltage phase B winding based on a flux of
(4.52),

vB = −NX
dΦMAB

dt

= −
µACSN

2
X

(3lE + lY )
diA
dt

, (4.53)

where vB is the induced voltage on the high voltage phase B winding. The inductance
component of (4.53) is,

LMAB =
µACSN

2
X

(3lE + lY )
, (4.54)
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where LMAB is the mutual inductance relationship from the high voltage phase A winding
to the high voltage phase B winding.

The flux observed by the high voltage phase A winding relative to the mmf of a high
voltage winding on phase B is given by,

ΦMBA =
lE + lY

(lE + lY ) + (lE + lY )
.ΦMB

=
1
2

2µACSNXiB
(3lE + lY )

∴ ΦMBA =
µACSNXiB
(3lE + lY )

. (4.55)

Since the respective flux relationships of (4.52) and (4.55) are equivalent based on iA = iB,
then the mutual inductances can also be assumed to be equivalent,

LMAB = LMBA (4.56)

where LMBA is the mutual inductance from the high voltage phase B winding to the high
voltage phase A winding.

Similarly, the results from (4.54) and (4.56) can be applied to the low voltage windings
by substituting the low voltage turns, Nx for the high voltage turns, NX ,

LMab = LMba =
µACSN

2
x

(3lE + lY )
(4.57)

where LMab and LMba are the mutual inductances between a low voltage outside limb
winding and a low voltage centre limb winding. In addition, as in Section 4.5.2, the
high/low voltage mutual inductances are,

LMAb = LMaB = LMBa = LMbA =
µACSNxNX

(3lE + lY )
. (4.58)

As discussed in the introduction, all of the results derived in this section for phase A can
be equally applied to phase C.

4.6 Inductive Disparity

Due to the intrinsic variation in the reluctance of windings on the outside limbs compared
to their counterparts on the centre limb, there exists a disparity in the corresponding self
inductance values. This is demonstrated by the high voltage self inductances of phases A
(4.16), and B (4.25) in Section 4.4. By comparing these two inductances, the degree of
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inductive disparity can be quantified in terms of the core’s limb and yoke dimensions,

Γ =
LMAA

LMBB

=
µACSN

2
X (2lE + lY )

(lE + lY ) (3lE + lY )
3lE + lY

2µACSN2
X

∴ Γ =
2lE + lY

2 (lE + lY )
(4.59)

where Γ is a figure representing the level of inductive disparity between phases due to
the core topology of the transformer. Since the reluctance path observed by the outside
windings will always be greater than that observed by the centre windings, the defined
inductive disparity of (4.59) will always be less than one. Based on the core length ratio
constraints from [34], inductive disparity has a typical range of,

0.60 ≤ Γ ≤ 0.75 . (4.60)

The effects of inductive disparity are discussed in Appendix A.

4.7 Transformer Inductance Matrix

The magnetic core based self and mutual inductances developed in Sections 4.4 and 4.5
can be simplified through use of the transformer turns ratio ā, inductive disparity Γ, and
a dimension ratio constant Λ which is introduced in Section 4.7.2.

4.7.1 Magnetic Core Self Inductance Terms

The first step is to take the magnetic core’s contribution to self inductance for the high
voltage phase A winding, and assume it is equivalent to a generic inductance term L̃,

LMAA = L̃ , (4.61)

where, from (4.16), L̃ is,

L̃ =
µACSN

2
X (2lE + lY )

(lE + lY ) (3lE + lY )
. (4.62)

On this basis, due to core symmetry, the same expression can also be directly assigned to
the phase C high voltage winding magnetic core self inductance,

LMCC = L̃ . (4.63)
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Similarly, via use of the inductive disparity defined in (4.59), the high voltage phase B
winding magnetic core self inductance is,

LMBB =
L̃

Γ
. (4.64)

The equivalent relationships for the low voltage winding magnetic core self inductance
utilising the transformer turns ratio are,

LMaa =
L̃

ā2
(4.65)

LMbb =
L̃

Γā2
(4.66)

LMcc =
L̃

ā2
. (4.67)

The high/low voltage common limb winding mutual inductances can be rewritten as,

LMAa = LMaA =
L̃

ā
(4.68)

LMBb = LMbB =
L̃

Γā
(4.69)

LMCc = LMcC =
L̃

ā
. (4.70)

4.7.2 Magnetic Core Mutual Inductances

In a similar fashion to Section 4.7.1, this section simplifies the magnetic core mutual
inductance derivations of Section 4.5.

Outside limb mutual inductance terms

For the outside limb mutual inductance terms, LAC and LCA, from (4.48) and (4.62),

LMAC = LMCA =
µACSN

2
X lE

(lE + lY ) (3lE + lY )

=
[

lE
2lE + lY

]
L̃ . (4.71)

Defining a dimension ratio constant Λ as,

Λ =
2lE + lY

lE
, (4.72)

allows (4.71) to be simplified,

LMAC = LMCA =
L̃

Λ
. (4.73)
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From (4.73) for Lac and Lca, and considering the turns ratio,

LMac = LMca =
L̃

Λā2
. (4.74)

The reduced relationship for the combination high/low voltage winding mutual inductance
of the core’s outside limbs can be defined as,

LMAc = LMaC = LMCa = LMcA =
L̃

Λā
. (4.75)

Outside/centre limb mutual inductances

For the outside to centre limb mutual inductances, from (4.54) and (4.56),

LMAB =
µACSN

2
X

(3lE + lY )

=
1
2
LMBB

∴ LMAB = LMBA =
L̃

2Γ
, (4.76)

and noting the symmetry of phases A and C,

LMBC = LMCB =
L̃

2Γ
. (4.77)

Hence for the low voltage windings,

LMab = LMba =
L̃

2Γā2
, (4.78)

and,

LMbc = LMcb =
L̃

2Γā2
. (4.79)

For the combination high/low voltage winding mutual inductance of the core’s out-
side/centre limbs,

LMAb = LMaB = LMBa = LMbA =
L̃

2Γā
, (4.80)

and,

LMBc = LMbC = LMCb = LMcB =
L̃

2Γā
. (4.81)

4.7.3 Inductance Matrix

A complete inductance matrix that details the associated self and mutual inductances
defined in this chapter is presented in Table 4.1. Each inductive element of Table 4.1 is
derived in terms of a combination of the following parameters,

• Core permeability [µ]
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L A B C a b c

A L̃+ LLA
L̃
2Γ

L̃
Λ

L̃
ā

L̃
2Γā

L̃
Λā

B L̃
2Γ

L̃
Γ + LLB

L̃
2Γ

L̃
2Γā

L̃
Γā

L̃
2Γā

C L̃
Λ

L̃
2Γ L̃+ LLC

L̃
Λā

L̃
2Γā

L̃
ā

a L̃
ā

L̃
2Γā

L̃
Λā

L̃
ā2 + LLa

L̃
2Γā2

L̃
Λā2

b L̃
2Γā

L̃
Γā

L̃
2Γā

L̃
2Γā2

L̃
Γā2 + LLb

L̃
2Γā2

c L̃
Λā

L̃
2Γā

L̃
ā

L̃
Λā2

L̃
2Γā2

L̃
ā2 + LLc

Table 4.1: Transformer inductance matrix

• Core cross sectional area [ACS ]

• Number of winding turns of the high and low voltage windings [NX , Nx]

• Mean yoke and limb lengths [lY , lE ]

• Leakage inductance of the high and low voltage windings [LLX , LLx]

4.8 Conclusion

This chapter has derived the self and mutual inductances of a three phase two winding
core type transformer. The inductance relationships were used to develop an inductance
matrix for the transformer. Each inductive element is in terms of physical parameters
for which later chapters will formulate estimates based on readily available transformer
details. The inductance matrix is a fundamental component in the generic phase model
developed in Chapter 6.
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Chapter 5

Leakage Inductance

5.1 Introduction

With increasing frequency, the permeability of the core decreases [107], hence, the in-
fluence of the leakage inductance becomes more significant. It is therefore necessary to
include leakage inductance in any wide-band frequency transformer model. Previous re-
search regarding the estimation of leakage inductance for modelling, such as in [55], has
not taken full advantage of the available test data and symmetry of a power transformer.
Other authors [75], make the assumption that the high voltage winding leakage inductance
accounts for somewhere between 75% and 90% of the total leakage inductance. In this
chapter we formulate relationships which can be used to estimate the leakage inductance
of a winding for use in a three phase transformer model of any vector group.

This chapter is structured in the following manner. Section 5.2 provides a brief
overview on leakage inductance in power transformers. Section 5.3 discusses the de-
termination of a transformer’s percent reactance through short circuit testing. Percent
reactance, together with other nameplate details, is used to determine the impedance of
the power transformer. Section 5.4 investigates the leakage flux magnetic circuit and the
relationship between the leakage flux of the primary and secondary windings. Section 5.5
uses transformer nameplate details to derive an estimate for the leakage inductance of the
primary and secondary windings of a single phase transformer. Section 5.6 estimates the
leakage inductance of the HV and LV windings of Dd, Dy, Yd and Yy connected three
phase transformers. Concluding remarks are then given in Section 5.7.

5.2 Background

An important parameter for power system designers is transformer impedance. This
impedance has both a resistive and a reactive component. The resistive component is
due to resistance and eddy current based losses within the windings. This component
also accounts for stray losses in structural parts of the transformer [71]. The reactance is
due to the load current generating large magnetic fields around the respective windings.
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Figure 5.1: Single phase equivalent circuit of a short circuit test used to determine a
transformer’s percent impedance.

These fields are commonly referred to as leakage flux fields and occupy the space both
within and between the windings [52]. These fields can be thought of as an inductive
impedance between the transformer windings, and are commonly referred to as leakage
reactance. Though initially thought to be a shortcoming of transformer design, its value
as a method of limiting short circuit currents has since been realised [53].

5.3 Short Circuit Test

A transformer’s impedance is typically presented as a percentage that represents the
voltage drop at full load current, relative to the rated voltage. Typically a transformer
would have an impedance of approximately 2% for small distribution transformers and
as high as 20% for large power transformers [71]. In practice this is determined by short
circuiting either the primary or secondary winding, and increasing the voltage on the
other winding until full load current is achieved. Figure 5.1 illustrates the test using a
single phase equivalent circuit model.

During a short circuit test the magnetising current is small relative to the short circuit
current, hence, it is assumed negligible [71]. The applied voltage vSC is increased until
full load current is achieved. At this point the percent impedance can be determined by
expressing the applied voltage divided by the rated voltage as a percentage [52],

Z % =
∣∣∣∣ vSCvHR

∣∣∣∣× 100 , (5.1)

where vSC is the voltage applied to the high voltage winding, vHR is the rated voltage of
the high voltage winding, and Z % is the percent impedance.

Further simplification of Figure 5.1 is made possible by referring the secondary impedances
to the primary1 side, (2.29) (2.30). The simplified short circuit test equivalent circuit is
shown in Figure 5.2.

1The primary is assumed to be the high voltage winding.
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Figure 5.2: Simplified single phase equivalent circuit of a short circuit test.

With reference to Figure 5.2 it can be observed that,

vSC = iSCXZL = iHRZL , (5.2)

where iSCX is the HV short circuit current, iHR is the rated current of the HV winding,
and ZL is the transformer impedance. During a short circuit test the current is increased
until it is equal to the rated HV current iHR. By combining (5.1) with (5.2),

Z % =

∣∣∣∣∣ iHRZLvHR

∣∣∣∣∣ × 100 . (5.3)

A relationship for the impedance of a single phase power transformer in terms of its
nameplate parameters is found by rearranging (5.3),

|ZL| =
vHRZ %
100iHR

. (5.4)

From Figure 5.2 ZL is given by,

ZL =
(
RX + ā2Rx

)
+ jw

(
LLX + ā2LLx

)
. (5.5)

In the transformer equivalent circuits shown in Figures 5.1 and 5.2, the resistances, RX
and Rx, represent the resistive losses of the HV and LV windings respectively. However,
relative to Z %, the contribution of the resistance is very small [71]. On this basis, it
can be assumed that the leakage reactance parameters, LLX and LLx, are the dominant
contributors to the percent impedance and hence (5.5) can be approximated by,

ZL ≈ jw
(
LLX + ā2LLx

)
. (5.6)

Since the leakage reactance is much larger than the transformer resistance, the percent
impedance is commonly referred to as percent leakage reactance [52, 53, 71].

With reference to the impedance (5.6), a commonly used approximation [51, 71] is to
evenly distribute the impedance into a primary leakage reactance term and a “primary
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referred” secondary leakage reactance term, that is,

1
2
ZL ≈ jwLLX ≈ jwā2LLx . (5.7)

The following section investigates the merits of this approximation.

5.4 Leakage Flux Path

The magnetomotive force of each transformer winding is, generally, uniformly distributed
along its axial length. Assuming that the windings are of similar height, the resulting
leakage fields tend to be axial from one side of the core window to the other (neglecting
fringing at the winding ends) [18, 71]. These axial flux lines meet the transformer core at
either end of the core window resulting in a composite leakage reluctance that consists of
the axial path across the core window, and the return path through the core,

RLX = RWX +RFEX , (5.8)

RLx = RWx +RFEx , (5.9)

where for the HV winding, RLX is the composite leakage reluctance, RWX is the core
window leakage reluctance and RFEX is the magnetic core leakage reluctance. Likewise
for the LV winding leakage reluctance.

The reluctance for a uniform magnetic circuit is given by,

R =
l

µ0µrA
, (5.10)

where l is the flux path length, A is the cross sectional area of the flux path and µ0 is
the permeability of free space. The leakage flux traveling across the core window is in a
region that is not ferromagnetic. As a result, the relative permeability tends to that of a
vacuum, i.e. µr = 1 [94], hence RWX and RWx are frequency independent. In contrast,
the permeability of a transformer core decays with increasing frequency due to magnetic
skin effect (Chapter 3), resulting in an increase in the core reluctance. However, Chapter
3 also showed that for frequencies up to 1MHz, the permeability remains significant
relative to a permeability of one. Therefore, for frequencies up to 1MHz an appropriate
approximation is to assume that,

RWX � RFEX , (5.11)

RWx � RFEx , (5.12)
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and hence (5.8) and (5.9) can be approximated as,

RLX ≈ RWX , (5.13)

RLx ≈ RWx , (5.14)

where the leakage reluctance terms of (5.13) and (5.14) can be considered frequency
independent.

Considering that the magnetising current is very small relative to the load current
under short circuit test conditions, the HV magnetomotive force is approximately equal
to that of the LV (2.19) [62],

NXiX ≈ Nxix , (5.15)

where NX is the number of HV winding turns and iX is the HV winding current, and
likewise for the LV winding. Noting that a transformer’s low voltage winding generally
occupies the position closest to the core, the leakage flux density will start from zero at
the inside diameter of the low voltage winding and linearly increase to reach a maximum
at its outside diameter. This maximum flux density will remain constant until the inside
diameter of the high voltage winding, at which point the leakage flux density will linearly
decay to zero at the outside diameter of the high voltage winding [52, 53, 71]. The
resulting flux density profile is trapezoidal in shape when looking at a radial cross section
of the windings [71, 94]. This is shown in Figure 5.3. This figure presents a transformer
core window cross section where the LV winding is a helix wound high current winding
and the HV winding is disc wound. It is noted that the flux lines are axially parallel with
the peak leakage density between the windings and the flux density is zero beyond the
windings. This figure is an idealisation only as all fringing effects have been neglected
and it is assumed that the core is the return path for all flux lines. This would not be the
case in practice as this leakage flux model simplifies the problem, however, it will provide
a reasonable approximation.

For estimation purposes it is proposed that the leakage reluctance observed by the
mmf of each winding be considered approximately equivalent, i.e

RLX ≈ RLx . (5.16)

Technically the reluctance values will not be equivalent since the leakage reluctance as-
sociated with each winding is dependent upon the geometry of the windings and their
relationship with each other and the core. However with reference to (5.10) and Figure
5.3, two key observations can be made to support the approximation. The first is that
the axial leakage path length across the core window is similar for both the HV and LV
windings based on the assumption that the windings are of similar height. The second
observation is that the leakage flux is concentrated in the area between the HV and LV
windings.
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Figure 5.3: Core window cross section detailing leakage flux density with respect to
transformer high and low voltage windings (neglecting fringing at the winding ends).
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The mmf associated with each winding will produce a flux proportional to the leakage
reluctance path. From (5.15) and (5.16), the magnetic leakage flux of the HV winding is
approximately equal to the magnetic leakage flux of the LV winding,

φX ≈ φx . (5.17)

It is now possible to derive the relationship for leakage inductance of the two windings.
From the self inductance definition (2.14),

LLX =
NXφX
iX

, LLx =
Nxφx
ix

. (5.18)

Utilising the assumption of balanced leakage flux (5.17), we have,

LLXiX
NX

≈
LLxix
Nx

LLX ≈
LLxNXix
NxiX

∴ LLX ≈ āLLx

( ix
iX

)
. (5.19)

For a single phase transformer (5.19) can be rewritten to take into account the current
ratio (2.9),

LLX ≈ a2LLx , (5.20)

which agrees with the relationship of (5.7).
It is proposed that this commonly used approximation [51, 71] is appropriate for its

intended purpose2.
As the leakage reactance is dependent upon the structural geometry of the transformer

windings in relation to each other and the core, the greater the winding axial length, the
greater the leakage reluctance, and hence the lower the leakage reactance [53], i.e,

Z % ∝ 1
lAW

(5.21)

where lAW is the axial length of the winding. Therefore a tall thin transformer will have
less flux leakage than an equivalent short wide transformer design.

5.5 Leakage Inductance of a Single Phase Transformer

This section will derive relationships which use nameplate details to estimate the HV and
LV leakage inductance of a single phase transformer. Combining (5.7) with (5.4) for the

2The initial value estimate of HV and LV leakage inductance terms used in the model estimation
algorithm of Chapter 7.
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HV winding,

wLLX ≈
1
2
vHRZ %
100iHR

∴ LLX ≈
vHRZ %

400πf iHR
, (5.22)

where f is mains frequency. Similarly for the LV winding from (5.7) and (5.4),

wā2LLx ≈
1
2
vHRZ %
100iHR

∴ LLx ≈
vHRZ %

400πf ā2iHR
. (5.23)

This can be simplified further by noting the ā relationship for the single phase trans-
former current (2.27), which during a short circuit test is at rated value. Therefore (5.23)
becomes,

LLx ≈
vHRZ %

400πf iHR
.

(
iHR
iLR

)2

≈
vHRiHRZ %
400πf i2LR

. (5.24)

Relationships have now been derived to determine an initial estimate for the leakage
inductance of the HV and LV windings of a single phase transformer, (5.22) and (5.24)
respectively, utilising information available from a transformer nameplate. However, these
relationships will not suffice for three phase systems since the vector group needs to be
taken into account. This is investigated in the following section.

5.6 Leakage Inductance of a Three Phase Transformer

To obtain an approximation of the leakage inductance for each winding in a three phase
transformer, it is necessary to take into account the vector group. In Section 2.9.3,
a detailed analysis determined the per phase equivalent circuit for each vector group
under consideration. With reference to Figure 2.15 and Table 2.4, a simplified per phase
equivalent circuit for the short circuit test of each vector group, is presented in Figure
5.4. As discussed in Section 5.3, the resistance is very small, hence is neglected. There
are two representations of the equivalent circuit, Figure 5.4 (a) is representative of the
short circuit test of a Dd or Dy vector group and (b), of a Yd or Yy vector group.

Since the line to line open circuit voltages of a transformer are provided by the name-
plate, with reference to the per phase equivalent circuit of Figure 5.4, the transformer
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Figure 5.4: Simplified per phase equivalent circuit for a short circuit test with the sec-
ondary leakage inductance referred to the primary. (a) Dd and Dy vector groups. (b) Yd
and Yy vector groups.

impedance definition of (5.1) can be rewritten. For a three phase application,

Z % =
√

3 |vSC |
vHR

× 100 , (5.25)

where vHR is the high voltage nameplate rating, which is line to line, and vSC is the phase
to neutral voltage of the equivalent circuit (Figure 5.4). With reference to the equivalent
circuit and noting that the short circuit test is conducted at rated current,

Z % =
√

3iHR|ZL|
vHR

× 100

∴ |ZL| =
vHRZ %

100
√

3iHR
, (5.26)

where iHR is the nameplate line current rating for the high voltage windings, and ZL rep-
resents the impedance. Hence a relationship has been obtained to calculate the magnitude
of the impedance in terms of nameplate details.

The following sections will determine the leakage inductance relationships for each of
the vector groups that are considered in this thesis.
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5.6.1 Leakage Inductance Estimate for a Dd vector group transformer

With reference to Table 2.4, for a Dd vector group the transformer impedance is,

ZL ≈ jw

(
LLX

3
+ ā2LLx

3

)
. (5.27)

As discussed in Section 5.3, a commonly used approximation [51, 71] is the equal division
of the transformer impedance into a primary leakage reactance and a “primary referred”
secondary leakage reactance. From (5.27),

1
2
ZL ≈ jw

(
LLX

3

)
≈ jwā2

(
LLx

3

)
. (5.28)

For the HV winding leakage inductance, substitute (5.26) into (5.28),

w

(
LLX

3

)
≈

1
2

[
vHRZ %

100
√

3iHR

]

∴ LLX ≈
3vHRZ %

400
√

3πiHRf
. (5.29)

For the LV winding leakage inductance, from Table 2.3, the transformer turns ratio
for a Dd vector group can be determined from the current gain relationship Ki,

|Ki| =
iLR
iHR

= ā . (5.30)

In this expression, iHR and iLR are the nameplate current ratings for the HV and LV
windings respectively. Substituting (5.26) and (5.30) into (5.28),

w

[(
iLR
iHR

)2 LLx
3

]
≈

1
2

[
vHRZ %

100
√

3iHR

]

∴ LLx ≈
3vHRiHRZ %
400
√

3πi2LRf
, (5.31)

Therefore, an initial estimate for the leakage inductance of the HV and LV windings, (5.29)
and (5.31) respectively, can be determined for a Dd vector group transformer utilising
readily available nameplate details.

5.6.2 Leakage Inductance Estimate for a Dy vector group transformer

With reference to Table 2.4, for a Dy vector group the transformer impedance is,

ZL ≈ jw

(
LLX

3
+ ā2LLx

3

)
. (5.32)
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Equally distributing the impedance of (5.32) into a primary leakage reactance and a
“primary referred” secondary leakage reactance,

1
2
ZL ≈ jw

(
LLX

3

)
≈ jwā2

(
LLx

3

)
. (5.33)

For the HV winding leakage inductance, substitute (5.26) into (5.33),

w

(
LLX

3

)
≈

1
2

[
vHRZ %

100
√

3iHR

]

∴ LLX ≈
3vHRZ %

400
√

3πiHRf
. (5.34)

For the LV winding leakage inductance, from Table 2.3, the transformer turns ratio
for a Dy vector group can be determined from the current gain relationship Ki,

|Ki| =
iLR
iHR

=
ā√
3

∴ ā =
√

3iLR
iHR

. (5.35)

Substituting (5.26) and (5.35) into (5.33),

w

(√3iLR
iHR

)2
LLx

3

 ≈
1
2

[
vHRZ %

100
√

3iHR

]

∴ LLx ≈
vHRiHRZ %
400
√

3πi2LRf
. (5.36)

Here (5.34) and (5.36) provide an initial estimate for the leakage inductance of the HV
and LV windings respectively, of a Dy vector group transformer.

5.6.3 Leakage Inductance Estimate for a Yd vector group transformer

With reference to Table 2.4, for a Yd vector group the transformer impedance is,

ZL ≈ jw
(
LLX + ā2LLx

)
. (5.37)

Equally distributing the impedance of (5.37) into a primary leakage reactance and a
“primary referred” secondary leakage reactance,

1
2
ZL ≈ jwLLX ≈ jwā2LLx . (5.38)
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For the HV winding leakage inductance, substitute (5.26) into (5.38),

wLLX ≈
1
2

[
vHRZ %

100
√

3iHR

]

∴ LLX ≈
vHRZ %

400
√

3πiHRf
. (5.39)

For the LV winding leakage inductance, from Table 2.3, the transformer turns ratio
for a Yd vector group can be determined from the current gain relationship Ki,

|Ki| =
iLR
iHR

= ā
√

3

∴ ā =
iLR√
3iHR

. (5.40)

Substituting (5.26) and (5.40) into (5.38),

w

[(
iLR√
3iHR

)2

LLx

]
≈

1
2

[
vHRZ %

100
√

3iHR

]
∴ LLx ≈

3vHRiHRZ %
400
√

3πi2LRf
, (5.41)

Equations (5.39) and (5.41) provide an initial estimate for the leakage inductance of
the HV and LV windings respectively, of a Yd vector group transformer.

5.6.4 Leakage Inductance Estimate for a Yy vector group transformer

With reference to Table 2.4, for a Yy vector group the transformer impedance is,

ZL ≈ jw
(
LLX + ā2LLx

)
. (5.42)

Equally distributing the impedance of (5.42) into a primary leakage reactance and a
“primary referred” secondary leakage reactance,

1
2
ZL ≈ jwLLX ≈ jwā2LLx . (5.43)

For the HV winding leakage inductance, substitute (5.26) into (5.43),

wLLX ≈
1
2

[
vHRZ %

100
√

3iHR

]

∴ LLX ≈
vHRZ %

400
√

3πiHRf
. (5.44)

For the LV winding leakage inductance, from Table 2.3, the transformer turns ratio
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Vector Group LLX LLx

Dd 3L̂LX 3L̂Lx

Dy 3L̂LX L̂Lx

Yd L̂LX 3L̂Lx

Yy L̂LX L̂Lx

Table 5.1: Three phase leakage inductance initial estimates

for a Yy vector group can be determined from the current gain relationship Ki,

|Ki| = ā =
iLR
iHR

(5.45)

Substituting (5.26) and (5.45) into (5.43),

w

[(
iLR
iHR

)2

LLx

]
≈

1
2

[
vHRZ %

100
√

3iHR

]

∴ LLx ≈
vHRiHRZ %
400
√

3πi2LRf
. (5.46)

Equation (5.44) and (5.46) provide an initial estimate for the leakage inductance of
the HV and LV windings respectively, of a Yy vector group transformer.

5.6.5 Winding Leakage Inductance Estimate Summary

A summary of the leakage inductance estimate equations is given in Table 5.1 where

L̂LX =
vHRZ %

400
√

3πiHRf
and (5.47)

L̂Lx = L̂LX

(
iHR
iLR

)2

. (5.48)

In equations (5.47) and (5.48), L̂LX is the nominal high voltage winding leakage induc-
tance and L̂Lx is the nominal low voltage winding leakage inductance for generic phase
X. vHR is the transformer high voltage rating, iHR and iLR are the high and low voltage
terminal current ratings, Z % is the percent reactance and f is the operating frequency.
It is clear from Table 5.1 that, like the delta/star transformation relationship of (2.66),
the estimate, based on the associated terminal ratings, involves a factor of three for a
delta connection.
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5.7 Conclusion

In power system analysis it is convenient to reduce the complexity of a network by con-
sidering three phase transformers on a per phase basis. The transformer details required
for this analysis are obtained from the transformer nameplate. This information is also
valuable from the perspective of transformer modelling. In this chapter, the percent re-
actance and other details from the nameplate were used to formulate leakage inductance
relationships for the high and low voltage windings of several vector group topologies.
The relationships developed in this chapter are used to determine initial values for the
leakage inductance parameters used in the parameter estimation algorithm implemented
in Chapter 9. By using genuine approximations of parameter values in an estimation
algorithm, problems such as local minima can be avoided, helping to ensure that the final
parameter estimates are physically feasible.
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Chapter 6

Generic Phase Model

6.1 Introduction

This chapter develops a generic phase, wide-band frequency, transformer model. The
model incorporates the complex permeability of the core, as developed in Chapter 3, and
the self and mutual inductance relationships developed in Chapter 4. It also takes into
account the major capacitive coupling influences as well as the loss terms associated with
the skin and proximity effect of the winding. Where possible, each model component is
reduced into a physically quantifiable parameter, e.g. core dimensions, number of winding
turns and lamination thickness. This approach will enable the veracity of the model to
be demonstrated by comparing estimated parameters to those that can be physically
measured.

This chapter is structured in the following manner. Section 6.2 details the use of
generic phase and section references within the modelling approach. Section 6.3 develops
a frequency dependent generic inductance model based on the work from Chapters 3 and
4. Section 6.4 develops a frequency dependent winding resistance model that incorporates
the effects of skin and proximity effect. Section 6.5 derives analytical estimates based on
geometry for each of the model’s capacitor elements. Section 6.6 constructs the generic
phase model from the circuit elements developed in the previous sections. Concluding
remarks are given in Section 6.7.

6.2 Generic Phase Referencing

An FRA test measures the frequency response between a nominal pair of transformer
terminals. There are a number of different FRA test types [6], however, for a three phase
transformer, each test sequence will typically record three measurements. For example,
in a High Voltage End to End FRA test, measurements are taken between A-B, B-C
and C-A 1. To construct a model that can be representative of different terminal pair
combinations, it is convenient to utilise generic phase references. As discussed in Section

1FRA test connections are discussed in detail in Chapter 7.
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Figure 6.1: Composite inductor element i for generic HV winding X

2.3.3, this research proposes the use of X-Y-Z for the HV terminals and x-y-z for the LV
terminals.

The use of generic phase referencing facilitates the substitution of the physical at-
tributes associated with each phase for different test combinations. For example, if generic
phase X is assigned to phase B for one test, then all of the geometric details associated
with phase B are used to calculate the parameters within the generic phase X model
during the modelling of that particular test. Likewise for assignments to generic phase
models Y and Z.

In addition, since a lumped parameter model is made up of many “sections”, subscripts
i and j are used to represent generic winding sections within the n section generic model.

For the remainder of this chapter discussion will tend to focus on generic phase X.
However, all modelling in this chapter applies equally to generic phases Y and Z.

6.3 Inductance Model

In Chapter 4, self and mutual inductance relationships were derived for a three phase
core type transformer (see Table 4.1 for a summary). The relationships comprised of
both ferromagnetic and leakage inductance components. The ferromagnetic component
of each entry in Table 4.1 is formulated around the base inductance, L̃. The leakage
inductance for the high voltage winding is given by LLX , and the low voltage winding,
LLx. The composite inductance element2, LXi, is shown in Figure 6.1. The contributions
of the ferromagnetic and leakage components are discussed separately in the following
sections.

2The composite nature of the inductive element is symbolised by the use of the Fraktur character L.
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ā

L̄
Λā2
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Table 6.1: Sectional transformer inductance matrix

6.3.1 Ferromagnetic Inductance

The ferromagnetic base inductance, L̃, as derived in Chapter 4 (4.62), is representative
of an entire winding. When considered from the perspective of an n section lumped
parameter model, the number of turns per section is given by,

NX
n for the high voltage winding,
Nx
n for the low voltage winding.

From (4.62), the ferromagnetic base inductance for a model that is comprised of n
sections is given by,

L̄ =
L̃

n2
=
µACS

(
NX
n

)2
(2lE + lY )

(lE + lY ) (3lE + lY )
, (6.1)

where µ is the complex permeability, ACS is the core cross sectional area, lE is the limb
length and lY is the yoke length. Note that the complex permeability is defined as,

µ = µ0µs (6.2)

where µ0 is the permeability of free space and µs is the effective permeability (3.22).
Considering the ferromagnetic contribution to the inductances as defined in Table 4.1,

L̃ is weighted by the transformer turns ratio ā, and the transformer core length ratios,

Γ =
2lE + lY

2 (lE + lY )
, (6.3)

Λ =
2lE + lY

lE
. (6.4)

An n section version of Table 4.1 is presented in Table 6.1. Each entry in the table is
frequency dependent with µ as per (3.22). The leakage inductance is discussed in Section
6.3.2.

Due to the effective permeability being complex, (3.22), the resulting expression can
be considered to be a combination of inductive and resistive components (3.24). The
inductive component is a combination of self inductance, LXi(ω), and its affiliated mutual
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inductance. The frequency dependent resistance, RXi(ω), is considered to be the eddy
current loss component of the core. Since the flux generated within the ferromagnetic core
of the transformer is assumed to have no leakage, the ferromagnetic mutual inductance
between sections of the same winding is considered equivalent to the self inductance of
the winding, i.e.

LXi(ω) = LXiXj(ω) (6.5)

Lxi(ω) = Lxixj(ω) . (6.6)

The ferromagnetic contribution to the composite inductance element can be observed
in Figure 6.1.

6.3.2 Leakage Inductance

The leakage inductance is due to flux fields both within and between the associated wind-
ings. Some of the leakage flux will link all turns of the winding that generates it, whereas
some will only link a proportion of them [103], i.e. leakage coupling is strongest between
turns in close proximity. On this basis, when considering leakage inductance in an n

section lumped parameter model, the mutual coupling between leakage inductance ele-
ments across the winding is non-uniform. It is therefore necessary to introduce a coupling
coefficient that decreases with respect to the axial distance between circuit elements.

As discussed in Section 5.4, leakage flux travels through the transformer windings
and returns via the core. As a result the path reluctance is dominated by the relative
permeability of the materials within the winding window which approaches unity. As
a consequence, we consider the leakage coupling coefficient versus axial distance profile
for each winding to approximate that of an air cored solenoid. In the seminal papers by
Wilcox et al. [122][123], expressions were developed for the calculation of the self and
mutual impedances associated with transformer winding sections. Part of the work by
Wilcox et al. [123] considered the inductance between winding section i and j in air,
as shown in Figure 6.2. The equation for the air cored inductance between these two
sections, L̃ij , for an axial distance z, is given by,

L̃ij = µ0NiNj

√
(rirj)

2
κ

[(
1− κ2

2

)
K(κ)− E(κ)

]
, (6.7)

where Ni, Nj are the number of turns for the respective winding sections and ri, rj are
the mean sectional radii. K(κ) and E(κ) are the complete elliptic integrals of the first
and second kind where κ is given by,

κ =

√
4rirj

z2 + (ri + rj)2
. (6.8)

The equation defined in (6.7) is not directly applicable to the distributed leakage induc-
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Figure 6.2: Winding sections i and j in air

tance that exists within the primary and secondary windings of a transformer. Here we
propose that the decay profile of the mutual inductance between two winding sections
versus the distance between them in air, as governed by (6.7), is an appropriate decay
profile to model the inductive coupling of distributed leakage inductance sections versus
axial distance. For example, using (6.7) we can obtain the mutual inductance versus
distance profile for two 325mm radius, 100 turn winding sections, as shown in Figure 6.3.

It is proposed that the decay of the mutual (leakage) inductance with respect to
distance can be modelled by a cascaded coupling coefficient where3,

LLXij ≈ τ |i−j|L for 0 ≤ τ ≤ 1 and i, j ∈ [1..n]. (6.9)

In (6.9), LLXij is the mutual (leakage) inductance between winding sections i and j of
generic phase X, L is the self (leakage) inductance of an individual section, and τ is the
model coupling coefficient where τ = 0 is no coupling and τ = 1 is perfect coupling. A 4
section model is shown in Figure 6.4.

To demonstrate the applicability of the cascaded coupling coefficient, the mutual
inductance versus section distance, for a 20 section model, is fitted to the Wilcox equation
profile of Figure 6.3. This is accomplished by determining a coupling coefficient τ such
that LLXij ≈ L̃ij across equivalent axial and sectional distances. In this example the best
fit was obtained with τ = 0.76. The sectional distance is scaled by equating the number
of sections n to the maximum axial distance zMAX (n = 20 , zMAX = 1000mm).

From the cascaded coupling coefficient (6.9), the leakage inductance of the phase X
winding, LLX , can be determined through the summation of all the individual self and

3The HV winding leakage inductance is used as the reference for the remainder of this section, however
the relationships developed here equally apply to the LV winding.
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in air. (Dotted line) Mutual (leakage) inductance versus winding sectional distance with
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mutual leakage inductance terms,

LLX ≈
n∑
i=1

n∑
j=1

τ |i−j|L for 0 ≤ τ ≤ 1 and i, j ∈ [1..n]. (6.10)

Given (6.9) and (6.10), a relationship for determining the leakage inductance between
sections i and j in terms of the overall leakage inductance, LLX , can now be derived,

LLXij ≈
τ |i−j|LLX[∑n

i=1

∑n
j=1 τ

|i−j|
] for 0 ≤ τ ≤ 1 and i, j ∈ [1..n]. (6.11)

Using an estimate for the overall leakage inductance LLX , as detailed in Section 5.6, and
the knowledge that τ is bounded between 0 and 1, constraints can be placed on LLXij

when it is used in the parameter estimation algorithm of Chapter 9.
The leakage inductance contribution to the composite inductance circuit element is

shown in Figure 6.1 where LLXi is the leakage self inductance of section i, i.e. i = j, and
LLXij is the mutual leakage inductance between sections i and j.

6.4 Winding Resistance Model

The transformer winding can be considered to have an inherent DC and a frequency
dependent AC resistance. The DC resistance is directly proportional to the resistivity
of the conductor which is inversely proportional to the winding conductor cross sectional
area. In a typical power transformer, the large conductor cross sectional area ensures that
the DC resistance, RDC , is comparatively very small.

AC resistance is due to the induction of eddy currents within the windings. These
induced resistive losses can be classified into two categories, skin and proximity effect.

6.4.1 AC Resistance - Skin Effect

Skin effect is due to the magnetic field generated by the current in the conductor. This
has the effect of increasing the current density near the conductor surface relative to its
centre, which results in an increase in the effective resistance.

An estimate for the resistance due to skin effect can be made using the Dowell Method
[42]. Assuming that the conductors are closely packed, each layer of a winding will
approximate the geometry of a conductor foil, hence, the problem can be reduced to a
one dimensional model.

The AC resistance due to skin effect [48], is given by,

RS =
RDCξ

2

[
sinh ξ + sin ξ
cosh ξ − cos ξ

]
, (6.12)
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where
ξ =

d
√
π

2δ
, (6.13)

δ =
1√
πfµσ

(6.14)

is the skin depth, d is the conductor diameter, f the frequency in Hz, and the permeability
and conductivity of the conductor material are given by µ and σ respectively. Given a
conductor cross sectional area AX , the conductor diameter in (6.13) can be estimated to
be,

d ≈ 2

√
AX
π

. (6.15)

Substituting (6.15) into (6.13) we get

ξ =
√
AX
δ

. (6.16)

6.4.2 AC Resistance - Proximity Effect

Proximity effect occurs when the current in adjacent conductors generate magnetic fields
which induce circulating eddy currents in neighbouring conductors. This will impact on
the conductors current distribution in the same manner as skin effect, and therefore will
increase the effective resistance.

Again, assuming that the conductors are closely packed and that each layer of a
winding approximates the geometry of a conductor foil, the AC resistance due to proximity
effect for the mth layer [48] is,

RP =
RDCξ

2

[
(2m− 1)2 sinh ξ − sin ξ

cosh ξ + cos ξ

]
. (6.17)

6.4.3 Composite Winding Resistance

Assuming that the magnetic field from the other conductors is uniform across the conduc-
tor cross section, an orthogonal relationship exists between the skin and proximity effect
[85]. The two effects can be decoupled and an estimate for the total eddy current losses
can be determined through the addition of both effects (6.12) and (6.17). Combining
both the AC and DC winding loss contributions and considering them to be sectionally
distributed, the composite resistance element4, RXi, is given by,

RXi(ω) = RPXi(ω) +RSXi(ω) +RDCXi , (6.18)

and is shown in Figure 6.5.
4The composite nature of the resistance element is symbolised by the use of the Fraktur character R.
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Figure 6.5: Composite series resistance element i for generic winding X

The DC resistance RDC is a measurable quantity. The permeability of copper ap-
proximates that of free space and the conductivity is typically σ = 58 × 106 S/m. With
this information, given parameter estimates for the number of winding layers m and the
conductor cross sectional area AX , a value for the composite series resistance element
RXi(ω) can be estimated.

6.5 Capacitance Model

There are many forms of capacitive coupling within a transformer. A transformer cross
sectional view given in Figure 6.6 shows several important capacitive elements in the
transformer structure. To obtain a physically representative transformer model across a
broad range of frequencies, it is important to incorporate all of the dominant capacitive
elements into the model.

In the following sections we discuss each of the capacitances used in the model and
derive relationships, based on transformer dimensions, in order to facilitate an estimate
of their value. The derived relationships are used in conjunction with finite element
analysis to validate the results in Chapter 9. This section on capacitance concludes with
a discussion of the non-ideal nature of capacitors and the need for the capacitive element
to include a parallel loss path [52].

6.5.1 High Voltage to Low Voltage Winding Capacitance

The capacitance between the high and low voltage windings of a transformer can be
estimated by treating it as a cylindrical capacitor. To determine this capacitance we
assume that a charge of +Q and −Q is present on each of the capacitor’s conductor
surfaces. These charges result in the formation of an electric field intensity E. Gauss’s
Law, given by, ∮

s
D.ds = Q , (6.19)

where D is the electric flux density and Q is the total free charge enclosed on the surface.
Now D = εE where ε is the electrical permittivity of the dielectric medium between the
two cylindrical conductors, hence (6.19) can be written as,
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∮
s
E.ds =

Q

ε
. (6.20)

With reference to Figure 6.7, the inside radius of the outer conductor is ro and the outside
radius of the inner conductor is ri. Using cylindrical coordinates with unitary vector a,
the electric field intensity within the dielectric at radius r, where ri < r < ro, is given by
[126, 32],

E = ar
Q

ε(2πrL)
, (6.21)

where L is the conductor length. We next determine the potential difference between the
two conductors,

v = −
∫ ro

ri

E.dl

= −
∫ ro

ri

[
ar

Q

(2πεrL)

]
. [ardr]

=
Q

(2πεL)
ln
[
ro
ri

]
. (6.22)

The capacitance is then given by,

C =
Q

v
=

2πεL

ln
[
ro
ri

] . (6.23)

With reference to Figure 6.6, (6.23) can be used as an estimate for the sectional
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Figure 6.8: Parallel cylinders.

high voltage winding to low voltage winding capacitance, CXxi, in terms of transformer
dimensions, i.e.

CXxi ≈
2πεL

n ln
[

ΘHID

ΘLOD

] , (6.24)

Where ΘHID is the high voltage winding inside diameter and ΘLOD the low voltage
winding outside diameter. Note that (6.24) is based on n sections.

6.5.2 Low Voltage Winding to Core Capacitance

The capacitance of the low voltage winding to transformer core can also be treated as a
cylindrical capacitor. With reference to Figure 6.6 and equation (6.23), an estimate for
the sectional capacitance, Cgxi, in terms of transformer dimensions is,

Cgxi ≈
2πεL

n ln
[

ΘLID

ΘCOD

] , (6.25)

where ΘLID is the low voltage winding inside diameter and ΘCOD the transformer’s core
outside diameter. This capacitance is based on n sections.

6.5.3 Interphase High Voltage Winding Capacitance

The capacitance between the high voltage windings of two adjacent phases can be esti-
mated by treating the geometry as two parallel cylinders as shown in Figure 6.8 [71]. The
capacitance per unit length for this geometry [71, 126, 32], is given by,

C =
πε

cosh−1

[
S

R

] , (6.26)
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where 2S is the distance between the cylinder centres and R is the radius of both cylinders.
Relating the dimensions of Figure 6.8 to those of Figure 6.6,

S =
ΘHOD + δHV

2
(6.27)

and
R =

ΘHOD

2
, (6.28)

where δHV is the smallest distance between two adjacent high voltage windings and ΘHOD

is the outside diameter of the high voltage winding. The capacitance (per unit length) in
terms of the transformer dimensions can be determined by substituting (6.27) and (6.28)
into (6.26), hence,

C =
πε

cosh−1

[
1 +

δHV
ΘHOD

] . (6.29)

Now defining CXY i to be the generic capacitance of each section between the high voltage
windings of two adjacent phases, for a winding of length L with n winding sections, we
have,

CXY i ≈
πεL

n cosh−1

[
1 +

δHV
ΘHOD

] . (6.30)

This relationship in conjunction with an estimate of the transformer’s HV winding diam-
eter and core dimensions, as detailed in Chapter 8, can be used to place constraints on
model estimates of CXY i.

6.5.4 High Voltage Winding to Tank Capacitance

The capacitance between the high voltage winding and the tank can be estimated by
considering the transformer as a cylindrical conductor with respect to a ground plane [71].
With reference to Figure 6.9, the relationship for a cylinder to ground plane capacitance
per unit length [71, 126] is,

C =
2πε

cosh−1

[
S

R

] , (6.31)

where S is the distance between the centre of the cylinder and the plane, and R is the
outside radius of the cylinder. With reference to Figure 6.6, (6.31) can be related to the
high voltage winding to tank capacitance of each section, CgXi, in terms of the transformer
dimensions,
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CgXi ≈
2πεL

n cosh−1

[
1 +

2∆SW

ΘHOD

] , (6.32)

where L is the high voltage winding axial length, ∆SW is the orthogonal distance between
the outside diameter of the high voltage winding and the transformer tank side walls, and
ΘHOD is the outside diameter of the high voltage winding.

It can be observed from Figure 6.6 that in practice the high voltage winding to tank
capacitance of phase B would be subtly smaller than that of phases A and C due to the
influence of the end walls of the tank. This influence was not considered in (6.32).

As with the interphase capacitance relationship, (6.32) in conjunction with the trans-
former external dimensions and an estimate of its HV winding diameter and core dimen-
sions, as detailed in Chapter 8, can be used to place constraints on model estimates of
CgXi.

6.5.5 Series Winding Capacitance

The term series capacitance is a general term that includes the capacitance between
turns in the same disc as well as the capacitance between turns in adjacent discs. This is
shown in Figure 6.10 with CRT denoting the radial turn to turn capacitance and CAT the
axial turn to turn capacitance. Series Capacitance is of critical importance in transformer
design since its distributed value is a determining factor in the initial voltage distribution,
and hence the resulting insulation stress, that occurs during a transient over-voltage [53].
When the series capacitance is large relative to the capacitance to ground, the initial
voltage is more evenly distributed, therefore the response to a voltage surge is more benign
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[52]. As a result, a number of approaches have been taken to increase the effective series
capacitance by altering the arrangement of turns within a disc section of a transformer.
Typical approaches taken include electrostatic shielding and the interleaving of turns [53].
Here we focus on the continuous and interleaved disc winding approaches.

Axial Turn Capacitance

The sectional approach to modelling a transformer divides the windings into many sec-
tions. For each of these sections, the axial dimensions can be considered small relative to
a transformer’s winding diameter. As a result, the use of simple parallel plate formulae
can be used to derive the capacitance between two consecutive discs [52]. With reference
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to Figure 6.11 and assuming uniform permittivity, the axial capacitance is given by [38],

CAD =
επ
(
Θ2
HOD −Θ2

HID

)
4dS

, (6.33)

where CAD is the axial capacitance between two adjacent discs, dS is the axial distance
between the discs, and ΘHOD and ΘHID are the outside and inside diameters respectively.

With reference to Figure 6.10 it can be observed that a disc is comprised of (NTD − 1)
axial turn capacitances, CAT , where NTD is the number of turns per disc. From (6.33),

CAT =
CAD

(NTD − 1)

=
επ
(
Θ2
HOD −Θ2

HID

)
4dS (NTD − 1)

. (6.34)

Radial Turn Capacitance

The radial turn capacitance CRT , as shown in Figure 6.10, can also be determined using
a parallel plate approach by treating two adjacent turns as parallel conductors [38]. This
results in,

CRT = ε

[
πwDm

tp

]
, (6.35)

where w is the conductor width, Dm is the mean winding diameter and tP is twice the
paper insulation thickness. Incorporating the transformer dimensions of Figure 6.6 into
(6.35),

CRT =
επw [ΘHOD + ΘHID]

2tp
. (6.36)

Equivalent Series Capacitance of the Continuous Disc Winding

The equivalent series capacitance can store the same amount of electrostatic energy that a
winding section would store if the section had a linearly distributed voltage applied across
it [36]. Applying the voltage vDP to the disc pair shown in Figure 6.10, and assuming
that the voltage is distributed evenly across all of the 2NTD turns of the disc pair, then
the voltage per turn is,

vRT =
vDP

2NTD
. (6.37)

By equating the electrostatic energy across all of the radial turn capacitances to an
equivalent value for the disc pair CER [71],

1
2
CERv

2
DP =

1
2
CRT

[
vDP

2NTD

]2

[2 (NTD − 1)] , (6.38)

as there are 2 (NTD − 1) radial turn capacitances per disc pair. Arranging (6.38) in terms
of CER, we have

CER =
(NTD − 1)CRT

2N2
TD

. (6.39)
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Given that (6.39) is for a disc pair, the equivalent radial capacitance for a winding section
CERX is,

CERX =
(NTD − 1)CRT
NDSN2

TD

, (6.40)

where NDS is the number of discs per section. A relationship in terms of transformer
dimensions, Figure 6.6, can be found by substituting (6.36) into (6.40),

CERX =
επw(NTD − 1) (ΘHOD + ΘHID)

2tpNDSN2
TD

≈
επw (ΘHOD + ΘHID)

2tpNDSNTD
, (6.41)

noting that NTD � 1.
The voltage across each of the axial turn capacitors, CAT , can now be determined from

the radial capacitor voltage distribution. Starting at the inside diameter, the sequence is
[71],

2vDP
2NTD

,
4vDP
2NTD

,
6vDP
2NTD

, .....,
2(NTD − 1)vDP

2NTD
. (6.42)

Using the distributed voltages of (6.42) to equate the electrostatic energy across all of the
axial turn capacitances we obtain an equivalent value for the disc pair, denoted CEA, i.e.

1
2
CEAv

2
DP =

1
2
CAT

[ [
2vDP
2NTD

]2

+
[

4vDP
2NTD

]2

+ ...+
[

2(NTD − 1)vDP
2NTD

]2
]
. (6.43)

From the mathematical identity,

12 + 22 + ....+ (n− 1)2 =
n(n− 1)(2n− 1)

6
, (6.44)

equation (6.43) can be simplified to,

CEA =
(NTD − 1) (2NTD − 1)

6NTD
CAT . (6.45)

A linear distribution for a voltage vDS applied across a winding section of NDS discs is
shown in Figure 6.12. It can be observed that the potential difference across any disc pair

is
2vDS
NDS

. The energy across all of the disc pair axial capacitances for this winding section

must be equal to the energy across an equivalent axial capacitance for the section. That
is,

1
2
CEAXv

2
DS =

1
2
CEA

[
2vDS
NDS

]2

× (NDS − 1) , (6.46)

where CEAX is the equivalent axial capacitance for a winding section and (NDS − 1) is
the number of disc pair axial capacitors in the winding section. Equation (6.46) can be
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rewritten as,

CEAX =
4 (NDS − 1)

N2
DS

CEA . (6.47)

A relationship in terms of the transformer dimensions of Figure 6.6 for (6.47) can be
found by substituting (6.34) and (6.45) into (6.47),

CEAX ≈
4 (NDS − 1)

N2
DS

.
(NTD − 1) (2NTD − 1)

6NTD
.
επ
(
Θ2
HOD −Θ2

HID

)
4dS (NTD − 1)

≈
επ (NDS − 1)

(
Θ2
HOD −Θ2

HID

)
3dSN2

DS

, (6.48)

noting that NTD � 1. This simplification cannot be assumed for NDS (the number of
discs per section) as it is linked to the modelling resolution and the disc pair lower limit,
i.e. there must be at least two discs per section (NDS ≥ 2).

The equivalent series capacitance of a continuous disc winding for winding section
i is determined by summing the equivalent sectional radial capacitance (6.41) and the
equivalent sectional axial capacitance (6.48),

CSXi =
επw (ΘHOD + ΘHID)

2tpNDSNTD
+
επ (NDS − 1)

(
Θ2
HOD −Θ2

HID

)
3dSN2

DS

. (6.49)

Interleaved Disc Winding Equivalent Series Capacitance

Interleaving is the process of separating sequential turns by a turn that is electrically
more distant. An example of interleaving turns within a disc pair is shown in Figure
6.13. Assuming that the applied voltage, vDP , is uniformly distributed across each turn,
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an increase in the separation distance of sequential turns results in an increase in the
potential difference between physically adjacent turns. This has the effect of increasing
the equivalent series capacitance [71].

There are a number of interleaving options. Here we derive the series capacitance for
an interleaved winding of two strands over two discs [53]. Since the axial distance between
each disc is significantly greater than the distance between two radially adjacent turns,
the axial turn capacitance in an interleaved winding can be considered small relative to
the radial capacitance component and is neglected.

With reference to the disc pair shown in Figure 6.13, it can be observed that there are
12 turns per disc pair, or 2NTD = 12 where NTD is the number of turns per disc. Between
each adjacent turn is a radial turn capacitance CRT with a total of 10, or 2(NTD − 1),
capacitors per disc pair. There are 6, NTD, adjacent turn pairs where there is a turn
separation of 6, NTD. These adjacent turn pairs are (1, 7) , (2, 8), (3, 9), (4, 10), (5, 11)
and (6, 12). There are 4, (NTD − 2), adjacent turn pairs where there is a turn separation
of 5, (NTD − 1). These are (2, 7) , (3, 8), (5, 10) and (6, 11). A voltage vDP applied to
the disc pair such that it is uniformly distributed across each turn will result in a voltage
drop across each sequential turn of

vDP
2NTD

. The capacitors that have a 6, NTD, turn

separation will possess a voltage of
NTDvDP

2NTD
, or

vDP
2

. The capacitors that have a 5,

(NTD − 1), turn separation will possess a voltage of
(NTD − 1)vDP

2NTD
. An equivalent value

of capacitance for the disc pair, CER, can be determined by equating its electrostatic
energy to the electrostatic energy of all of the individual capacitances of the disc pair
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[71],

1
2
CERv

2
DP =

1
2
CRT

[vDP
2

]2
NTD +

1
2
CRT

[
(NTD − 1)vDP

2NTD

]2

(NTD − 2) . (6.50)

Rearranging (6.50) in terms of CER, we have

CER =

[
NTD

4
+ (NTD − 2)

[
(NTD − 1)

2NTD

]2
]
CRT . (6.51)

Since NTD � 1, (6.51) reduces to,

CER ≈
NTDCRT

2
. (6.52)

As (6.52) is based on a disc pair, the equivalent series capacitance for winding section i
of NDS discs for generic phase X, is given by,

CSXi ≈
NTDCRT
NDS

. (6.53)

The equivalent series capacitance for an interleaved winding section in terms of trans-
former dimensions in Figure 6.6, can be found by substituting (6.36) into (6.53),

CSXi ≈
(
NTD

NDS

)(
επw (ΘHOD + ΘHID)

2tp

)
≈

επwNTD (ΘHOD + ΘHID)
2tpNDS

. (6.54)

The interleaved disc winding will have a larger series capacitance than the continuous
disc winding configuration, however it is more expensive to manufacture. As a result, the
winding configuration used in a power transformer is generally dependent on a tradeoff
between performance and manufacturing costs [52].

6.5.6 Dielectric Loss

In addition to the displacement current of a capacitor, dielectric material will also experi-
ence losses through conduction and material polarization [16]. The relationship between
displacement and conduction currents for a capacitive element can be concisely described
through analysis of Ampere’s circuital law. In differential form, Ampere’s circuital law
[32] is given by,

∇×H = J +
∂D
∂t

, (6.55)

where J is the conduction current density and ∂D
∂t is the displacement current density.

Since the field vectors are sinusoidal functions of time, (6.55) can be expressed in time-



6.5. CAPACITANCE MODEL 121

harmonic form as,
∇×H = J + jωεE , (6.56)

where ε is the permittivity of the medium and ω the angular frequency. If there is
conduction across the dielectric medium of a capacitor, the conductance must be greater
than zero (σ > 0) hence conduction current density can be expressed as,

J = σE . (6.57)

By combining (6.56) and (6.57),

∇×H = (σ + jωε) E

= jω

(
ε+

σ

jω

)
E

= jωεcE . (6.58)

The complex permittivity εc is defined as,

εc = ε+
σ

jω
= ε

′ − jε′′ , (6.59)

where,

ε
′

= ε (6.60)

ε
′′

=
σ

ω
. (6.61)

Now the ratio of ε′′ to ε′relates the magnitude of the conduction current to the dis-
placement current. This ratio is the loss tangent of the capacitive medium and is a
measure of the ohmic loss [32],

tan δc =
σ

ωε
=
ε
′′

ε′
, (6.62)

where δc is referred to as the loss angle. Monitoring the variation in the loss tangent of
a transformer’s insulation system over time is a useful technique for gauging the thermal
age of the insulation, and hence its remaining service life [23].

An ideal capacitor can be expressed in terms of permittivity and geometric topology.
For example, a parallel plate capacitor constructed from two plates of area A, separated
by a distance d and assumed to have no losses, will have a capacitance of,

C = ε
A

d

= εC̃ , (6.63)

where C is the ideal capacitance and C̃ represents the geometric capacitance [16]. For
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a non-ideal capacitor the conduction losses can be included by substituting the complex
permittivity, εc of (6.59), for the ideal permittivity, ε in (6.63), giving the non-ideal
capacitance5,

C = εcC̃ . (6.64)

From (6.59) and (6.64), the circuit admittance for a non-ideal capacitor is [16, 39],

Y = jωC

= jωεcC̃

= ωε
′′
C̃ + jωε

′
C̃

= G+ jωC . (6.65)

It can be observed from (6.65) that the admittance of a non-ideal capacitor can be rep-
resented as the parallel combination of a loss conductance G and an ideal capacitor [52].
Combining the loss conductance of (6.65) with (6.61),

G = ωε
′′
C̃

= σC̃ . (6.66)

From (6.66) it is seen that the loss conductance of a capacitor is equivalent to the geo-
metrically scaled conductance of the capacitor’s dielectric. With reference to (6.62) and
(6.63), (6.66) can be rewritten as,

G = ωC tan δc . (6.67)

The tan δc relationship is dependent upon the dielectric material. For example, for
NomexR© paper insulation, tan δc can be modelled as [54],

tan δc = 0.07
(

1− 6
7
e−(0.05ω×10−6)

)
, (6.68)

and therefore the loss conductance G in this case is a non-linear frequency dependent
term.

As discussed within Section 6.5, there are several dominant capacitance relationships
which need to be considered when modelling a transformer. In each case the permittivity
of the medium is a combination of materials, such as paper/pressboard in mineral oil as
discussed in Section 2.6. Without a priori knowledge of the internal dimensions and ma-
terial makeup of the transformer, it is necessary for the dielectric loss of each capacitance
to be treated as independent parameters.

The circuit element used to represent each of the non-ideal capacitors used in the
transformer model takes the form shown in Figure 6.14.

5The composite nature of the capacitance element is symbolised by the use of the Fraktur character
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Figure 6.14: Circuit element for a non-ideal capacitor

6.6 Model for Generic Phase X

The model for generic phase X shown in Figure 6.15 is constructed from the circuit ele-
ments that have been defined in the previous sections. A generic three phase transformer
model can then be constructed through the interconnection of three of the generic phase
model blocks, nominally designated X, Y and Z. Figure 6.16 provides examples for Dyn1
and YNyn0 vector groups.

The high voltage winding of the generic phase model shown in Figure 6.15, is based
on the series connection of alternating resistive, RX , and inductive, LX , circuit elements
(Sections 6.3 and 6.4). Each RXLX pair represents a section of the model’s n high voltage
winding sections. The low voltage winding’s resistive and inductive circuit elements, Rx

and Lx respectively, run in parallel with their high voltage winding equivalents.
For the distributed non-ideal capacitance that exists between the high and low volt-

age windings (Section 6.5.1), a capacitive element, CXx, is placed between each winding
section in the model. In order to balance the capacitance distribution, the value of the

capacitive element at the winding ends of each phase is
1
2
CXx.

The non-ideal capacitance between a low voltage winding section and the transformer
core (Section 6.5.2), is represented by the capacitive element, Cgx. As with CXx, the

capacitive element at the winding ends of each phase is
1
2
Cgx.

With reference to Figure 6.15, the capacitive element, CXY , represents the non-ideal
capacitance between the equivalent high voltage winding sections of phase X and phase
Y (Section 6.5.3). Likewise, capacitive element CZX , represents the non-ideal capacitance
between the equivalent high voltage winding sections of phase Z and phase X. The ca-
pacitive coupling between adjacent phase high voltage winding sections is repeated for
generic phase models Y and Z as given in Table 6.2. In practice only phases A and B and
phases B and C are physically adjacent. Therefore the capacitance that is representative
of the interphase capacitance between phases A and C must approach zero. For example,
if the generic phases X, Y and Z were nominally allocated to phases A, B and C respec-

C.
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Figure 6.15: Model for generic phase X.
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Figure 6.16: Generic transformer model examples; (a) Dyn1, (b) YNyn0.

Table 6.2: Interphase capacitive elements linking each of the generic phase models.

Generic Phase Model Interphase Capacitive Elements

X CXY , CZX

Y CXY , CY Z

Z CY Z , CZX

tively, then CZX would be set to zero in the transformer model. Again to balance the
interphase capacitance distribution, the capacitive element values at the winding ends
of each phase are at half value, i.e. between phase X and Y, at the winding ends, the

sectional capacitance is
1
2
CXY .

The capacitive element, CgX , represents the non-ideal capacitance between a high
voltage winding section of phase X and the transformer tank wall. For phases Y and
Z, the capacitive elements are designated CgY and CgZ . As discussed in Section 6.5.4,
these components are also dependent upon the phase allocation of the transformer due
to the geometric layout of the tank, i.e. in practice only phases A and C are adjacent
to a transformer tank end wall. There can also be a significant difference between the
phase A and phase C high voltage winding to end wall dimensions due to a variety of
transformer construction strategies [53]. An example might be the location of the tap
changer. However, due to the additional influence of the transformer tank end wall, it
would be expected that the parameter estimate for the high voltage winding to tank
capacitance for phases A and C would be larger than that of phase B,

CgA, CgC > CgB . (6.69)
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This parameter variation is demonstrated by example in Chapter 9. Once again the values
of the capacitive elements at the winding ends of each phase are considered at half value,

i.e. for phase X,
1
2
CgX .

The series capacitive elements for the high and low voltage winding sections of generic
phase X are CSX and CSx respectively. The derivation of the series capacitance is based
on the fact that when a sharp impulse is observed across a winding, it will behave like a
string of capacitors placed in series [53]. As a result, the model’s series capacitive elements
are placed in parallel with their respective inductance.

Note that any bushing capacitances associated with phase X are incorporated into
model capacitances CgX1 and CgX(n+1) for the HV terminals and Cgx1 and Cgx(n+1) for
the LV terminals.

6.7 Conclusion

This chapter presents a wide-band frequency, generic phase, transformer model. It has
used results from Chapters 3, 4 and 5 in order to develop the inductive element L of
Section 6.3. The inductive element is a composite component that takes into account
all of the associated inductive coupling between the various winding sections including
both the ferromagnetic and leakage contributions. It is frequency, geometry and winding
dependent.

The chapter then introduces a composite series resistance element R in Section 6.4.
Along with the DC resistance losses, the circuit element incorporates frequency depen-
dent skin and proximity effects. The section concludes by proposing a method for the
determination of the composite resistance using estimates of the cross sectional area of
the conductor and the number of winding layers. The advantage this approach has over a
simple resistance estimate is that these two parameters can be tightly constrained. This
is discussed further in Chapter 8.

Section 6.5 develops relationships for each of the major capacitive coupling influences
that exist throughout the transformer structure. These include the capacitance between
windings, windings and the core, windings of adjacent phases, windings and the tank wall
and the series capacitance across a winding. Series capacitance relationships were derived
for both continuous disc and interleaved disc windings. To take into account conduction
losses associated with each capacitor, a loss conductance was placed in parallel, resulting
in the non-ideal capacitive element C being defined.

The generic phase model was presented in Figure 6.15. This approach is ideal for
asymmetric injection modelling where individual sources may be applied to various ter-
minal connections, as is the case with FRA. Source injection within a winding can also be
accommodated which is useful for partial discharge location techniques. The model is de-
signed to function across a wide range of frequencies, nominally from DC to greater than
1MHz (Chapter 3). This bandwidth is suitable for FRA and PD location applications.
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Chapter 7

Modelling for
Frequency Response Analysis

7.1 Introduction

This chapter develops models for different FRA tests and transformer vector groups. A
layered approach is adopted in order to partition the overall model into logical segments.
The first layer represents the generic phase models X, Y and Z, the second layer is the
connection of these three models to form the transformer vector group, and the third layer
is the FRA test connection and associated input and output impedances. We specifically
focus on three different types of FRA tests applied to both Dyn1 and Dyn11 connected
transformers.

This chapter is structured in the following manner. Section 7.2 introduces the different
FRA test connections and illustrates the three tests which are the focus for the remainder
of the chapter. Section 7.3 discusses the layered modelling approach. Section 7.4 converts
the complex models into a normal tree form to facilitate the development of a state space
model. Section 7.5 derives transfer functions for each of the FRA tests. Section 7.6
provides an example which determines the transfer function between a terminal pair1 for
a particular FRA test connection. Concluding remarks are then given in Section 7.7.

7.2 Test Configurations for Frequency Response Analysis

The main FRA test types as classified by CIGRE are the End to End Open Circuit, End
to End Short Circuit, Capacitive Interwinding, and the Inductive Interwinding test [6].
The End to End Open Circuit test injects a signal into one end of a winding and measures
the response at the other end of the same winding. It is the most commonly used test
due to its simplicity and its ability to examine individual windings separately. The End
to End Short Circuit test is similar to the Open Circuit test, however with a winding

1The term terminal pair refers to the two transformer terminals connected as the FRA input and
output terminals during an FRA test. The remaining terminals are not connected to the test equipment.
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Figure 7.1: FRA test configurations for a Dyn vector group; (a) High Voltage Winding
End to End Open Circuit test, (b) Low Voltage Winding End to End Open Circuit test,
(c) Capacitive Interwinding test.
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of the same phase short circuited. This test removes the influence of the magnetising
inductance such that the leakage inductance dominates the low frequency response. At
high frequencies the response is similar to the End to End Open Circuit test [6]. The
Capacitive Interwinding test injects a signal into one end of a winding and measures the
response at the end of another winding of the same phase. As the test name suggests,
this test is particularly sensitive to the interwinding capacitance that exists between
windings of the same phase. The Inductive Interwinding test is connected as per the
Capacitive Interwinding test, with the exception that the opposite ends of both windings
are connected to ground.

An article by Satish et al. [98] classified the sensitivity of a broad range of FRA
test connections. Sensitivity was quantified by counting the number of observed natural
frequencies in each of the FRA tests, resulting in several categories. Of the standard
FRA tests described above, Satish et al. considered the End to End Open Circuit test
to be in the highest sensitivity category. The End to End Short Circuit, Capacitive
Interwinding and Inductive Interwinding tests were each classified in the second tier of
the sensitivity categories. In 2006 Jayasinghe et al. [61] conducted research on the
sensitivity of different FRA measurement connections and their ability to detect different
types of faults. In this article, the Capacitive Interwinding FRA test was found to be
more sensitive to axial displacement and radial deformation than the End to End Open
Circuit test. In addition, an article by Ryder et al. [97] in 2003 proposes the use of a
Capacitive Interwinding FRA test as a suitable means of detecting the axial collapse of a
300MVA autotransformer winding. Based on these articles and due to the large number
of FRA test and vector group permutations, we focus on the End to End Open Circuit
and Capacitive Interwinding tests for Dyn connected transformers. We note that the
modelling approach discussed in this chapter could equally be applied to all FRA test
connection and vector group combinations. The FRA tests utilised here are shown in
Figure 7.1. Each of these three FRA tests have three terminal permutations. This results
in nine unique frequency responses2 which can then be used to estimate the parameters
for a transformer model.

7.2.1 High Voltage Winding End to End Open Circuit Test

Figure 7.1(a) shows the High Voltage Winding End to End Open Circuit test on a generic
phase Dyn connected transformer. This test involves injecting a swept frequency signal
into one of the high voltage terminals and recording the output response on another. All
of the remaining terminals are left unconnected. Note that the test is repeated for all
three terminal pair permutations.

To facilitate FRA modelling, the input terminal for this test sequence is labelled
generic terminal X and the output terminal generic terminal Y (terminals Z, x, y and

2The frequency responses are also dependent upon the vector group, i.e. whether the vector group is
a Dyn1 or Dyn11.
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Figure 7.2: Vector group topologies; (a) Dyn1, (b) Dyn11.

z are unconnected). The modelling approach involves the substitution of the physical
phases, A through C, into a prescribed generic counterpart, X through Z, for each of the
three FRA test combinations (AB, BC and CA). The substitution of a physical phase
into the generic phase includes all of the associated physical relationships related to that
phase as discussed in Section 6.2.

The generic phase approach also facilitates modelling the phase order differences be-
tween Dyn1 and Dyn11 vector groups. With reference to Figure 7.2, it is noted that the
high voltage winding of a Dyn1 vector group has phase sequence A-C-B whereas a Dyn11
has phase sequence A-B-C. By comparing the physical connections of Figure 7.2 with the
generic phase connections of Figure 7.1(a), the generic phase allocation for each test is
established (see Table 7.1).

We note with reference to Figure 7.1(a) that the winding whose terminals have a
direct connection to the FRA input and output terminals, is labelled winding X. This
is important due to the disparity in inductance between a phase B winding and that of
phases A or C. Due to this disparity, the low frequency response is dependent upon the
FRA test pair and the transformer’s vector group. This is discussed in detail in Appendix
A.

7.2.2 Low Voltage Winding End to End Open Circuit Test

The Low Voltage Winding End to End Open Circuit test on a generic phase Dyn connected
transformer is shown in Figure 7.1(b). This test injects a swept frequency signal into a
low voltage terminal and records the output response at the neutral. All other terminals
are left unconnected. The test is performed sequentially between each of the low voltage
terminals and neutral.

Again, to facilitate modelling this FRA test, the low voltage generic terminal x is the
source input and the output is the low voltage winding neutral. The modelling approach
involves the substitution of the physical phases into their prescribed generic counterparts
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Table 7.1: Generic phase allocation for FRA tests of Dyn1 and Dyn11 vector groups for
High Voltage Winding End to End Open Circuit tests.

Vector Group FRA Test (vINvOUT ) X/x Y/y Z/z

Dyn1

AC A/a C/c B/b

BA B/b A/a C/c

CB C/c B/b A/a

Dyn11

AB A/a B/b C/c

BC B/b C/c A/a

CA C/c A/a B/b

Table 7.2: Generic phase allocation for FRA tests of Dyn1 and Dyn11 vector groups for
Low Voltage Winding End to End Open Circuit tests.

Vector Group FRA Test (vINvOUT ) X/x Y/y Z/z

Dyn1

an A/a C/c B/b

bn B/b A/a C/c

cn C/c B/b A/a

Dyn11

an A/a B/b C/c

bn B/b C/c A/a

cn C/c A/a B/b

for each of the three FRA tests (an, bn, and cn). The FRA tests and their corresponding
generic phase allocation for the Low Voltage Winding End to End Open Circuit test is
shown in Table 7.2.

7.2.3 Capacitive Interwinding Test

Figure 7.1(c) shows the Capacitive Interwinding test on a generic phase Dyn connected
transformer. This test is conducted between the high and low voltage terminals of a given
phase, with the remaining terminals left unconnected. The test is then repeated for the
other two phases.

To facilitate modelling of this FRA test, the injection point is the generic high voltage
terminal X and the output is the generic low voltage terminal x. The generic phase
allocation for each of the three FRA tests (Aa, Bb and Cc) is shown in Table 7.3.
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Table 7.3: Generic phase allocation for FRA tests of Dyn1 and Dyn11 vector groups for
Capacitive Interwinding tests.

Vector Group FRA Test (vINvOUT ) X/x Y/y Z/z

Dyn1

Aa A/a C/c B/b

Bb B/b A/a C/c

Cc C/c B/b A/a

Dyn11

Aa A/a B/b C/c

Bb B/b C/c A/a

Cc C/c A/a B/b
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Figure 7.3: Model layers.

7.3 Model Layers

A comprehensive system model of a three phase transformer undergoing an FRA test
is constructed by connecting three instances of the generic phase model developed in
Chapter 6, together with the required FRA test connections. To facilitate modelling each
of the vector group and FRA test types, it is convenient to consider the system model in
terms of layers. The first layer is the three instances (X, Y and Z) of the generic phase
model. The second and third layers are the vector group of the transformer and the FRA
test that is being prescribed respectively. The layer analogy is shown in Figure 7.3. A
mathematical model is now developed for each of the FRA tests discussed in Section 7.2.
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7.4 Conversion of Models to Normal Tree Form

To analyse the complex circuits in the model structures that are proposed, it is mathe-
matically advantageous to first convert the proposed model(s) into normal tree form [95].
This conversion process requires the application of a strict set of rules.

By definition [95], a normal tree can only have one path, via branches, between any
pair of nodes. In addition, a normal tree must have all independent voltage sources and
the maximum possible number of capacitances as tree branches. The remaining circuit
elements which were not allocated as branches are classified as links. To obtain the normal
tree form, tree links must contain the maximum possible number of inductances [95].

To satisfy these rules with respect to the proposed model, a few adjustments to the
model are necessary. The first adjustment is the decomposition of the capacitive elements
into their respective components. The second adjustment is for the sake of mathematical
convenience in later analysis and requires the conversion of all parallel conductances to
resistances and all series resistances to conductances.

In the normal tree, a capacitive element’s leakage conductance GXi (as discussed in
Section 6.5.6), is represented by the leakage resistance RXi where,

RXi =
1
GXi

. (7.1)

For the winding series resistance element RXi(ω) (as discussed in Section 6.4.3), its normal
tree representation is conductance,

GXi(ω) =
1

RXi(ω)
. (7.2)

These changes are also applied to phases Y and Z for both the HV and LV parameters.
Through application of these rules, the normal tree associated with each of the FRA

tests is obtained in the following manner. Step one, allocate the FRA injection voltage
source as a branch. For the High Voltage End to End Test and the Capacitive Interwinding
test, the source is located between the high voltage terminal X and earth. For the Low
Voltage End to End FRA test, the source is between the low voltage terminal x and earth.
The next step is the allocation of branches to as many of the capacitors as possible (whilst
maintaining the single path between nodes rule). After this step, the only unconnected
nodes that remain are the nodes between the winding inductive elements L and the
conductive elements G, for both the HV and LV windings. Since one of the normal tree
rules was to maximise the number of tree links associated with inductances, the final tree
branches need to be allocated to the winding conductive elements, G. All of the remaining
circuit elements should now be replaced by tree links. This last step also includes the
FRA termination resistor, RT , whose location is FRA test dependent. The normal tree
representations of the three FRA test system models are shown in Figures 7.4, 7.5 and
7.6.
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Figure 7.4: Normal tree representation for a High Voltage Winding End to End Open
Circuit FRA test on a generic phase Dyn connected model.
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Figure 7.5: Normal tree representation for a Low Voltage Winding End to End Open
Circuit FRA test on a generic phase Dyn connected model.
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Figure 7.6: Normal tree representation for a Capacitive Interwinding FRA test on a
generic phase Dyn connected model.
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7.5 Development of the Mathematical Model

For system analysis it is convenient to use a state space representation. This section devel-
ops state space equations for application to any of the FRA test system models discussed
in the previous section. The derivations used to develop the state space representation
are based on the work by Rohrer [95].

7.5.1 Branch to Link Coupling Matrix

In a lumped network topology such as in Figures 7.4, 7.5 and 7.6, the branch voltages,
vb(t), and branch currents, ib(t), can be partitioned with respect to their component type,
i.e.

vb(t) =



vV (t)

vC(t)

vG(t)

vS(t)

vR(t)

vL(t)


(7.3)

ib(t) =



iV (t)

iC(t)

iG(t)

iS(t)

iR(t)

iL(t)


, (7.4)

where vb(t) and ib(t) are both vectors and the subscript V denotes an independent voltage
source, C capacitance, G conductance, S elastance (reciprocal capacitance for capacitor
links), R resistance and L inductance3. A fundamental cutset occurs when the removal
of one tree branch and a minimum number of links separates the network tree into two
parts [95]. Hence, a fundamental cutset is just a graphical representation of Kirchoff’s
current law. On this basis, the fundamental cutset equations for a normal tree can be
defined as,

Qib(t) , 0 , (7.5)
3Note that the conductance and inductance are both composite elements (as discussed in Chapter 6)

and are symbolised as such by Fraktur letters.
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where 0 is a zero vector of appropriate dimensions and,

Q ,

[
I
...F
]
. (7.6)

In (7.6), I is the identity matrix and F is a matrix that relates the network tree branch
to link coupling. By grouping the respective branch to link connectivity relationships of
each of the circuit elements, F can be defined as,

F =


FV S FV R FV L

FCS FCR FCL

0 FGR FGL

 , (7.7)

where 0 is a zero submatrix of appropriate dimensions and,

FV S = voltage branch to elastance link submatrix,

FV R = voltage branch to resistance link submatrix,

FV L = voltage branch to inductance link submatrix,

FCS = capacitance branch to elastance link submatrix,

FCR = capacitance branch to resistance link submatrix,

FCL = capacitance branch to inductance link submatrix,

FGR = conductance branch to resistance link submatrix,

FGL = conductance branch to inductance link submatrix.

There is no FGS as, by definition, tree branch allocation is given a higher priority to capac-
itances relative to conductances. As a result FGS is a zero submatrix of the appropriate
dimension.

7.5.2 Application of Kirchoff’s Laws

From (7.5), (7.6) and (7.7), the fundamental cutset, or Kirchoff’s current law, equations
can be written as,

iV (t) + FV SiS(t) + FV RiR(t) + FV LiL(t) = 0 (7.8)

iC(t) + FCSiS(t) + FCRiR(t) + FCLiL(t) = 0 (7.9)

iG(t) + FGRiR(t) + FGLiL(t) = 0 . (7.10)

A fundamental loop is defined as being a loop of the network tree consisting of only
one link with the remaining sections consisting of tree branches. A fundamental loop can
be visualised as a graphical representation of Kirchoff’s voltage law. For the networks
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under consideration, the fundamental loop equations can be represented by,

Bvb(t) , 0 , (7.11)

where,

B ,

[
−FT...I

]
. (7.12)

From (7.7), (7.11) and (7.12) the fundamental loop, or Kirchoff’s voltage law, equations
can be written as,

vS(t)− FTV SvV (t)− FTCSvC(t) = 0 (7.13)

vR(t)− FTV RvV (t)− FTCRvC(t)− FTGRvG(t) = 0 (7.14)

vL(t)− FTV LvV (t)− FTCLvC(t)− FTGLvG(t) = 0 . (7.15)

7.5.3 Differential Equations for the Capacitive Components

The capacitance branch relationships are defined as, iC(t)

iS(t)

 =
d

dt


 CC 0

0 CS


 vC(t)

vS(t)


 , (7.16)

where CC is the capacitance branch parameter matrix and CS is the elastance link pa-
rameter matrix (in terms of capacitance). Both are positive definite diagonal matrices.

The capacitance cutset relationship of (7.9) can be rearranged,

iC(t) + FCSiS(t) = −FCRiR(t)− FCLiL(t) . (7.17)

The elastance fundamental loop of (7.13) can be written as,

vS(t) = FTCSvC(t) + FTV SvV (t) . (7.18)

Rearranging (7.18) we obtain, vC(t)

vS(t)

 =

 I

FTCS

vC(t) +

 0

FTV S

vV (t) . (7.19)
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Utilising (7.16) and (7.19), the LHS of (7.17) can be expressed as,

iC(t) + FCSiS(t) =
[

I FCS

] iC(t)

iS(t)



=
[

I FCS

]
d

dt


[

CC 0

0 CS

][ I

FTCS

]
vC(t) +

[
0

FTV S

]
vV (t)




=
d

dt

{(
CC + FCSCSFTCS

)
vC(t) + FCSCSFTV SvV (t)

}
. (7.20)

Equating (7.20) with the RHS of (7.17) we have,

d

dt

{(
CC + FCSCSFTCS

)
vC(t)+FCSCSFTV SvV (t)

}
= −FCRiR(t)−FCLiL(t) . (7.21)

By defining C such that,
C , CC + FCSCSFTCS , (7.22)

(7.21) can be written as,

d

dt

{
CvC(t) + FCSCSFTV SvV (t)

}
= −FCRiR(t)− FCLiL(t) , (7.23)

which defines the differential equations for the capacitive components.

7.5.4 Differential Equations for the Inductive Components

The inductance voltage-current relationship is defined as,

vL(t) =
d

dt
{LM iL(t)} , (7.24)

where LM is the matrix for the tree link inductance parameters. Substituting (7.24)
into the fundamental loop equation (7.15), we obtain the differential equations for the
inductive components,

d

dt
{LM iL(t)} = FTV LvV (t) + FTCLvC(t) + FTGLvG(t) . (7.25)

7.5.5 Conditioning the Differential Equations

To obtain a state variable model, it is necessary to eliminate iR(t) and vG(t) from equa-
tions (7.23) and (7.25). The tree branch conductance current-voltage relationship is given
by,

iG(t) = GMvG(t) , (7.26)
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where GM is the positive definite diagonal matrix for the conductance branch parameters.
Substituting (7.26) into the cutset equation (7.10) and solving for vG(t),

GMvG(t) + FGRiR(t) + FGLiL(t) = 0 ,

∴ vG(t) = −G−1
M [FGRiR(t) + FGLiL(t)] . (7.27)

The voltage to current relationship for the network tree’s link resistors is given by,

vR(t) = RRiR(t) , (7.28)

where RR is the positive definite diagonal matrix for the tree link resistances. Substituting
(7.28) into the fundamental loop equation of (7.14), gives,

RRiR(t)− FTV RvV (t)− FTCRvC(t)− FTGRvG(t) = 0 . (7.29)

Solving for iR(t),

iR(t) = R−1
R

[
FTV RvV (t) + FTCRvC(t) + FTGRvG(t)

]
. (7.30)

vG(t) can be removed from (7.30) through the substitution of (7.27),

iR(t) =R−1
R

[
FTV RvV (t) + FTCRvC(t)

+ FTGR
(
−G−1

M [FGRiR(t) + FGLiL(t)]
)]

[
1 + R−1

R FTGRG−1
M FGR

]
iR(t) =R−1

R

[
FTV RvV (t) + FTCRvC(t)− FTGRG−1

M FGLiL(t)
]

R−1
R

[
RR + FTGRG−1

M FGR

]
iR(t) =R−1

R

[
FTV RvV (t) + FTCRvC(t)− FTGRG−1

M FGLiL(t)
]

∴ iR(t) =
[
RR + FTGRG−1

M FGR

]−1[
FTV RvV (t) + FTCRvC(t)− FTGRG−1

M FGLiL(t)
]
.

(7.31)

Defining,
R ,

[
RR + FTGRG−1

M FGR

]
, (7.32)

(7.31) can be simplified to,

iR(t) = R−1
[
FTV RvV (t) + FTCRvC(t)− FTGRG−1

M FGLiL(t)
]
. (7.33)
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Similarly, it can be shown that iR(t) can be removed from (7.27) through the substitution
of (7.30). This results in,

vG(t) = −G−1
[
FGRR−1

R FTV RvV (t) + FGRR−1
R FTCRvC(t) + FGLiL(t)

]
, (7.34)

where,
G , GM + FGRR−1

R FTGR . (7.35)

The term iR(t) can now be removed from the differential equation of (7.23) by the
substitution of (7.33),

d

dt

{
CvC(t)+FCSCSFTV SvV (t)

}
= −FCRR−1

[
FTV RvV (t) + FTCRvC(t)− FTGRG−1

M FGLiL(t)
]

− FCLiL(t) . (7.36)

Similarly, the term vG(t) can be removed from the differential equation of (7.25) by the
substitution of (7.34), i.e.

d

dt
{LM iL(t)} = −FTGLG−1

[
FGRR−1

R FTV RvV (t) + FGRR−1
R FTCRvC(t) + FGLiL(t)

]
+ FTV LvV (t) + FTCLvC(t) . (7.37)

To simplify the differential equations (7.36) and (7.37), a set of matrices are now
defined,

KV L , FTGLG−1FGRR−1
R FTV R − FTV L , (7.38)

KCC , FCRR−1FTCR , (7.39)

KCL , FCL − FCRR−1FTGRG−1
M FGL , (7.40)

KCV , FCRR−1FTV R , (7.41)

KLC , FTGLG−1FGRR−1
R FTCR − FTCL , (7.42)

KLL , FTGLG−1FGL . (7.43)

Substituting (7.38) - (7.43) into (7.36) and (7.37) we have,

d

dt

{
CvC(t) + FCSCSFTV SvV (t)

}
= −KCV vV (t)−KCCvC(t)−KCLiL(t) (7.44)

and
d

dt
{LM iL(t)} = −KV LvV (t)−KLCvC(t)−KLLiL(t) . (7.45)
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7.5.6 State Space Model

To form the state space equations, it is convenient to define a new state variable, q(t)
where,

q(t) = CvC(t) + FCSCSFTV SvV (t) , (7.46)

which represents the “net charge per capacitance tree branch cutset”. To facilitate the
removal of vC(t) from the differential equations of (7.44) and (7.45), (7.46) is rearranged
in terms of vC(t),

vC(t) = C−1q(t)− C−1FCSCSFTV SvV (t) . (7.47)

Another state variable φ(t) can be defined as,

φ(t) = LM iL(t) , (7.48)

which represents the “net flux per inductance link fundamental loop”. Rearranging (7.48)
in terms of iL(t),

iL(t) = L−1
M φ(t) . (7.49)

The State Space equations are found by substituting (7.46), (7.47), (7.48) and (7.49)
into the differential equations (7.44) and (7.45),

d

dt
{q(t)} =−KCCC−1q(t)−KCLL−1

M φ(t)

+
[
KCCC−1FCSCSFTV S −KCV

]
vV (t) , (7.50)

d

dt
{φ(t)} =−KLCC−1q(t)−KLLL−1

M φ(t)

+
[
KLCC−1FCSCSFTV S −KV L

]
vV (t) . (7.51)

Expressing the differential equations (7.50) and (7.51) in state space form, q̇(t)

φ̇(t)

 = A

 q(t)

φ(t)

+ BvV (t) , (7.52)

where

A =−

 KCCC−1 KCLL−1
M

KLCC−1 KLLL−1
M

 , (7.53)

and
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B =

 KCCC−1FCSCSFTV S −KCV

KLCC−1FCSCSFTV S −KV L

 . (7.54)

7.5.7 Transfer Function Model

An FRA test generates the frequency response of the output voltage relative to the in-
jected input voltage. This is an empirical transfer function estimate (ETFE) between
the two test terminals of the FRA test system model. With reference to the normal tree
models of Figures 7.4, 7.5 and 7.6, the FRA input voltage is given by vIN and the FRA
output is the voltage across the 50Ω termination resistor RT . This voltage can be con-
sidered in terms of branch capacitor voltage drops. For example, considering the High
Voltage Winding End to End Open Circuit FRA test of Figure 7.4, the output voltage
is equivalent to the combined voltage drops across the branch capacitors Cgy1 and CY y1.
The transfer function of the model can then be determined from the resulting input and
output voltage relationships.

The capacitor branch voltages can be determined from the state space equation of
(7.52) in the following manner. First take the Laplace transform of the state space
equation, i.e.

s

 q(s)

φ(s)

 = A

 q(s)

φ(s)

+ BvV (s)

s

 q(s)

φ(s)

−A

 q(s)

φ(s)

 = BvV (s)

 q(s)

φ(s)

 = (sI−A)−1 BvV (s) . (7.55)

Since q(t) is defined as the “net charge per capacitance tree branch cutset” and each of
the FRA test models has a common capacitance branch allocation, q(t) has a matrix
dimension relative to the number of capacitance tree branches. With reference to Figures
7.4, 7.5 and 7.6, each section of the proposed n section lumped parameter model has
branch capacitors Cgx, Cgy, Cgz, CXx, CY y and CZz. As a result q(t) has a dimension of
6n × 1. This dimension is equivalent for q(s) which can therefore be expressed in terms
of a matrix,

q(s) =
[
q(s)1 · · · q(s)6n

]T
. (7.56)

Similarly, φ(t) is defined as the “net flux per inductance link fundamental loop”. Noting
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that each section of the proposed n section lumped parameter model has inductive element
links LX , LY , LZ , Lx, Ly, and Lz, φ(t) has a matrix dimension of 6n × 1. φ(s) can
also be expressed as a matrix,

φ(s) =
[
φ(s)1 · · · φ(s)6n

]T
. (7.57)

With reference to each of the system models of Figures 7.4, 7.5 and 7.6, it can be observed
that the branch voltage vector for voltage sources, vV (s), is the FRA injection voltage
vIN (s), i.e.

vV (s) = vIN (s) . (7.58)

Now from (7.55), (7.56) and (7.57), a 12n× 1 dimensional matrix P can be defined such
that,

P = (sI−A)−1 B =

[
p1 · · · p12n

]T
. (7.59)

Equation (7.59) can be written in terms relative to q(s) and φ(s),

P =
[
Pq

...Pφ

]T
, (7.60)

where

Pq =

[
p1 · · · p6n

]
, (7.61)

and

Pφ =

[
p(6n+1) · · · p12n

]
. (7.62)

Rewriting q(s) using (7.55), (7.58), (7.59) and (7.61), gives

q(s) = PT
q vIN (s) , (7.63)

Rewriting φ(s) using (7.55), (7.58), (7.59) and (7.62), gives

φ(s) = PT
φvIN (s) . (7.64)

Equating the Laplace transform of (7.46) with (7.63) and substituting vIN (s) for vV (s),

PT
q vIN (s) = CvC(s) + FCSCSFTV SvIN (s)

CvC(s) = PT
q vIN (s)− FCSCSFTV SvIN (s)

vC(s) = C−1
[
PT
q − FCSCSFTV S

]
vIN (s) . (7.65)



146 CHAPTER 7. MODELLING FOR FREQUENCY RESPONSE ANALYSIS

Equation (7.65) facilitates the determination of all of the branch capacitance voltages,

vC(s) =
[
vCgx2 · · · vCgx(n+1) vCgy1 · · · vCgy(n) vCgz1 · · · vCgz(n)

vCXx1 · · · vCXx(n) vCY y1 · · · vCY y(n) vCZz1 · · · vCZz(n)

]T
6n×1

,(7.66)

where vC(s) is the branch capacitor voltage matrix for the models given in Figures 7.4,
7.5 and 7.6. To determine vOUT (s) we define a matrix W of dimension 1 × 6n for the
summation of the appropriate branch capacitor voltages such that,

vOUT (s) = WvC(s) . (7.67)

Substituting (7.65) into (7.67),

vOUT (s) = WC−1
[
PT

q − FCSCSFT
VS

]
vIN (s)

∴ G(s) =
vOUT (s)
vIN (s)

= WC−1
[
PT

q − FCSCSFT
VS

]
. (7.68)

A transfer function for the FRA system models of Figures 7.4, 7.5 and 7.6 has now been
defined in (7.68). By applying a parameter estimation algorithm to FRA data, estimates
of the physical parameters of the model can now be obtained.

7.6 Example:

High Voltage Winding End to End Open Circuit FRA test for a Dyn1
vector group between phases A and B.

For an example, this section applies the mathematical model developed in the previous
section to a High Voltage Winding End to End Open Circuit FRA test between terminals
A and B of a Dyn1 connected power transformer. The normal tree model of Figure 7.4
is applicable, and with reference to Table 7.1, the physical to generic phase substitutions
are B to X, A to Y and C to Z. However, physical phase references are only made when
the relationship is phase dependent.

Note that the procedure applied in this section can be similarly applied to all of the
other FRA test and vector group configurations that have been considered thus far.

7.6.1 Capacitance Matrices

As discussed in Chapter 6, due to the geometric layout of a transformer, capacitance
is phase dependent. For example, the interphase high voltage winding capacitance is
non-zero between adjacent windings, i.e. capacitors CBA and CCB which represent the
capacitance between the centre limb winding (phase B) and the windings on the outer
limbs (Phases A and C).
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The capacitor branch matrix, CC , was first introduced in equation (7.16). CC is a
positive definite diagonal matrix that incorporates all of the branch capacitors associated
with the FRA model 4,

CC = diag
[
Cgx2 · · · Cgx(n+1) Cgy1 · · · Cgy(n) Cgz1 · · · Cgz(n)

CXx1 · · · CXx(n) CY y1 · · · CY y(n) CZz1 · · · CZz(n)

]
6n×6n

= diag
[
Cgb2 · · · Cgb(n+1) Cga1 · · · Cga(n) Cgc1 · · · Cgc(n)

CBb1 · · · CBb(n) CAa1 · · · CAa(n) CCc1 · · · CCc(n)

]
6n×6n

. (7.69)

Similarly, the elastance link parameter matrix (in terms of capacitance), CS , is given
by 5,

CS = diag
[
Cgx1 CXx(n+1) CY y(n+1) CZz(n+1) Cgy(n+1) Cgz(n+1)

CSX1 · · · CSX(n) CSY 1 · · · CSY (n) CSZ1 · · · CSZ(n)

CSx1 · · · CSx(n) CSy1 · · · CSy(n) CSz1 · · · CSz(n)

CXY 1 · · · CXY (n+1) CY Z1 · · · CY Z(n+1) CZX1 · · · CZX(n+1)

CgX1 · · · CgX(n+1) CgY 1 · · · CgY (n+1) CgZ1 · · · CgZ(n+1)]
(12n+12)×(12n+12)

= diag
[
Cgb1 CBb(n+1) CAa(n+1) CCc(n+1) Cga(n+1) Cgc(n+1)

CSB1 · · · CSB(n) CSA1 · · · CSA(n) CSC1 · · · CSC(n)

CSb1 · · · CSb(n) CSa1 · · · CSa(n) CSc1 · · · CSc(n)

CBA1 · · · CBA(n+1) CAC1 · · · CAC(n+1) CCB1 · · · CCB(n+1)

CgB1 · · · CgB(n+1) CgA1 · · · CgA(n+1) CgC1 · · · CgC(n+1)]
(12n+12)×(12n+12)

. (7.70)

7.6.2 Inductance Matrices

In equation (7.24), LM was defined as the tree link inductance matrix. From Chapter 6,
it was shown that the transformer inductance consists of both ferromagnetic and leakage

4Each section of the n section lumped parameter model has the branch capacitors Cgx, Cgy, Cgz, CXx,
CY y and CZz. As a result the capacitor branch parameter matrix will have a dimension of 6n× 6n.

5The n section lumped parameter model has the link capacitors Cgx1, CXx(n+1), CY y(n+1), CZz(n+1),
Cgy(n+1), Cgz(n+1), as well as n sections of CSX , CSY , CSZ , CSx, CSy, CSz and (n + 1) sections of CXY ,
CY Z , CZX , CgX , CgY , CgZ . This results in an elastance link parameter matrix with a dimension of
(12n + 12) × (12n + 12).
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Figure 7.7: 3 phase transformer mutual flux linkages. Flux linkage with respect to current
injection into (a) phase A, (b) phase B, (c) phase C.

inductance components. Hence LM can be written as,

LM = LF + LL , (7.71)
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where LF is a matrix for the ferromagnetic inductance and LL is a matrix for the leakage
inductance. Both LF and LL are comprised of self and mutual inductance elements. Not-
ing that mutual inductance relates the flux linkage on one winding due to the excitation
of another, it is then important to consider the flux direction within the various limbs of
a core type transformer.

With reference to Figure 7.7, taking the reference current and winding directions to
be the same for all windings, it can be observed that flux generated by a winding on one
phase will flow in the opposite direction through the windings of the other two phases.
Conversely, windings on the same limb will observe the same flux direction. On this basis,
the mutual inductance between winding sections on different phases is considered negative
and the mutual inductance between winding sections on the same phase is considered
positive.
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Taking into account the self and mutual inductance relationships and their associated
reference directions, the ferromagnetic matrix, LF , is 6,

LF =



+LXiXj −LXiY j −LXiZj +LXixj −LXiyj −LXizj

−LY iXj +LY iY j −LY iZj −LY ixj +LY iyj −LY izj

−LZiXj −LZiY j +LZiZj −LZixj −LZiyj +LZizj

+LxiXj −LxiY j −LxiZj +Lxixj −Lxiyj −Lxizj

−LyiXj +LyiY j −LyiZj −Lyixj +Lyiyj −Lyizj

−LziXj −LziY j +LziZj −Lzixj −Lziyj +Lzizj


6n×6n

=



+LBiBj −LBiAj −LBiCj +LBibj −LBiaj −LBicj

−LAiBj +LAiAj −LAiCj −LAibj +LAiaj −LAicj

−LCiBj −LCiAj +LCiCj −LCibj −LCiaj +LCicj

+LbiBj −LbiAj −LbiCj +Lbibj −Lbiaj −Lbicj

−LaiBj +LaiAj −LaiCj −Laibj +Laiaj −Laicj

−LciBj −LciAj +LciCj −Lcibj −Lciaj +Lcicj


6n×6n

, (7.72)

for i, j ∈ [1..n]. The resulting submatrix elements of LF are n × n square matrices
based on the transformer inductance matrix of Table 6.1. Since it is assumed that the
ferromagnetic coupling across a winding section is uniform, with reference to Table 6.1,
LF becomes,

LF =



+
L̄

Γ
[1] − L̄

2Γ
[1] − L̄

2Γ
[1] +

L̄

Γā
[1] − L̄

2Γā
[1] − L̄

2Γā
[1]

− L̄

2Γ
[1] +L̄ [1] − L̄

Λ
[1] − L̄

2Γā
[1] +

L̄

ā
[1] − L̄

Λā
[1]

− L̄

2Γ
[1] − L̄

Λ
[1] +L̄ [1] − L̄

2Γā
[1] − L̄

Λā
[1] +

L̄

ā
[1]

+
L̄

Γā
[1] − L̄

2Γā
[1] − L̄

2Γā
[1] +

L̄

Γā2
[1] − L̄

2Γā2
[1] − L̄

2Γā2
[1]

− L̄

2Γā
[1] +

L̄

ā
[1] − L̄

Λā
[1] − L̄

2Γā2
[1] +

L̄

ā2
[1] − L̄

Λā2
[1]

− L̄

2Γā
[1] − L̄

Λā
[1] +

L̄

ā
[1] − L̄

2Γā2
[1] − L̄

Λā2
[1] +

L̄

ā2
[1]


6n×6n

,

(7.73)
6Each section of the n section lumped parameter model has the tree link inductance parameters LX ,

LY , LZ , Lx, Ly, and Lz. Since each tree link inductance is comprised of both a ferromagnetic and a
leakage inductance contribution, matrices LF and LL will have a dimension of 6n× 6n.
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where [1] is an n× n matrix where all entries are 1. LF is the ferromagnetic inductance
matrix and therefore the leakage inductance of Table 6.1 is not included. The distributed
ferromagnetic base inductance L̄, as defined in (6.1), is a frequency dependent term based
upon the permeability relationship of (3.22).

From Section 6.3.2, leakage inductance is assumed to have no cross coupling between
windings. This results in a leakage inductance matrix LL that is diagonal in terms of its
submatrix elements,

LL =



LLXij 0 0 0 0 0

0 LLY ij 0 0 0 0

0 0 LLZij 0 0 0

0 0 0 LLxij 0 0

0 0 0 0 LLyij 0

0 0 0 0 0 LLzij


6n×6n

=



LLBij 0 0 0 0 0

0 LLAij 0 0 0 0

0 0 LLCij 0 0 0

0 0 0 LLbij 0 0

0 0 0 0 LLaij 0

0 0 0 0 0 LLcij


6n×6n

, (7.74)

for i, j ∈ [1..n]. Each of the submatrix elements of LL are n × n in size but unlike LF ,
the diagonal (non-zero) components are not uniform and are governed by the distributed
leakage inductance relationship of equation (6.11), which is

LLXij ≈
τ |i−j|LLX[∑n

i=1

∑n
j=1 τ

|i−j|
] for 0 ≤ τ ≤ 1 and i, j ∈ [1..n].
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As an example, the submatrix LLBij is given by,

LLBij ≈
1[∑n

i=1

∑n
j=1 τ

|i−j|
] ×



LLB τ1LLB τ2LLB · · · τ (n−1)LLB

τ1LLB LLB τ1LLB · · · τ (n−2)LLB

τ2LLB τ1LLB
. . . . . .

...
...

...
. . . . . . τ1LLB

τ (n−1)LLB τ (n−2)LLB · · · τ1LLB LLB


n×n

, (7.75)

where 0 ≤ τ ≤ 1.

7.6.3 Conductance and Resistance Matrices

For mathematical convenience the series resistance element of the winding for the generic
phase model, as defined in Section 6.4, was converted to its conductance form in (7.2).
With reference to Figure 7.4, all of the conductance elements within the model’s normal
tree are “branches”. As such, the conductive element branch parameter matrix, GM , that
was introduced in equation (7.26), is given by7,

GM = diag
[
GX1 · · · GX(n) GY 1 · · · GY (n) GZ1 · · · GZ(n)

Gx1 · · · Gx(n) Gy1 · · · Gy(n) Gz1 · · · Gz(n)

]
6n×6n

= diag
[
GB1 · · · GB(n) GA1 · · · GA(n) GC1 · · · GC(n)

Gb1 · · · Gb(n) Ga1 · · · Ga(n) Gc1 · · · Gc(n)

]
6n×6n

. (7.76)

Once again for mathematical convenience, the capacitor dielectric loss conductance of
Section 6.5.6 was converted to resistance in (7.1). These dielectric loss resistances, plus
the addition of the FRA termination resistor RT , are “links” in the normal tree of Figure

7Each section of the n section lumped parameter model has the series conductance branch parameters
GX , GY , GZ , Gx, Gy and Gz. As a result the conductive element branch parameter matrix will have a
dimension of 6n× 6n.
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7.4. The tree link resistance matrix RR is given by 8,

RR = diag
[
RSX1 · · · RSX(n) RSY 1 · · · RSY (n) RSZ1 · · · RSZ(n)

RSx1 · · · RSx(n) RSy1 · · · RSy(n) RSz1 · · · RSz(n)

RgX1 · · · RgX(n+1) RgY 1 · · · RgY (n+1) RgZ1 · · · RgZ(n+1)

Rgx1 · · · Rgx(n+1) Rgy1 · · · Rgy(n+1) Rgz1 · · · Rgz(n+1)

RXx1 · · · RXx(n+1) RY y1 · · · RY y(n+1) RZz1 · · · RZz(n+1) RT]
(15n+10)×(15n+10)

= diag
[
RSB1 · · · RSB(n) RSA1 · · · RSA(n) RSC1 · · · RSC(n)

RSb1 · · · RSb(n) RSa1 · · · RSa(n) RSc1 · · · RSc(n)

RgB1 · · · RgB(n+1) RgA1 · · · RgA(n+1) RgC1 · · · RgC(n+1)

Rgb1 · · · Rgb(n+1) Rga1 · · · Rga(n+1) Rgc1 · · · Rgc(n+1)

RBb1 · · · RBb(n+1) RAa1 · · · RAa(n+1) RCc1 · · · RCc(n+1) RT]
(15n+10)×(15n+10) . (7.77)

As a minor simplification, the resistance elements for the interwinding dielectric loss have
been neglected at this stage.

7.6.4 F Submatrices

In Section 7.5.1, the tree branch to link coupling matrix F was given in (7.7). In (7.7), the
matrix rows correspond to individual tree branches and the matrix columns correspond
to individual tree links. The value of a matrix cell is determined by the application of a
fundamental cutset to each branch (row). All of the unaffected links will have a branch-
link cell value of 0. Of the “cut” links, if the link and branch have the same graph polarity
relative to the cutset, the branch-link cell will have a value of +1. For the opposite
polarity, the cell value is −1.

The matrix rows follow the branch allocation order discussed in Section 7.4 with
respect to the model in Figure 7.4. In this example the test voltage source vIN is followed
by the branch capacitors (diagonal elements of CC in (7.69)), followed by the branch
conductances (diagonal elements of GM in (7.76)). Table 7.4 shows the alignment between
the normal tree branches of Figure 7.4, and the corresponding rows of matrix9 F.

Similarly, each column of F in (7.7) represents a link within the normal tree of Figure
8The n section lumped parameter model has the tree link resistor RT , as well as n sections of RSX ,

RSY , RSZ , RSx, RSy, RSz, and (n+1) sections of RgX , RgY , RgZ , Rgx, Rgy, Rgz, RXx, RY y, RZz. This
results in a tree link resistance matrix with a dimension of (15n + 10) × (15n + 10).

9Generic phase references are used throughout this section since the branch to link coupling matrix is
the same for all phase orientations of the High Voltage Winding End to End Open Circuit FRA test.
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Row Branch

1 vIN

2 Cgx2

...
...

n+ 1 Cgx(n+1)

n+ 2 Cgy1

...
...

2n+ 1 Cgy(n)

2n+ 2 Cgz1
...

...

3n+ 1 Cgz(n)

3n+ 2 CXx1

...
...

4n+ 1 CXx(n)

Row Branch

4n+ 2 CY y1

...
...

5n+ 1 CY y(n)

5n+ 2 CZz1
...

...

6n+ 1 CZz(n)

6n+ 2 GX1

...
...

7n+ 1 GX(n)

7n+ 2 GY 1

...
...

8n+ 1 GY (n)

8n+ 2 GZ1

Row Branch
...

...

9n+ 1 GZ(n)

9n+ 2 Gx1

...
...

10n+ 1 Gx(n)

10n+ 2 Gy1

...
...

11n+ 1 Gy(n)

11n+ 2 Gz1

...
...

12n+ 1 Gz(n)

- -

- -

Table 7.4: Alignment between the normal tree branches of Figure 7.4 and the rows of
matrix F

7.4. The allocation order for the columns of F in this example are given in Tables 7.5,
7.6 and 7.7.

With reference to Table 7.4 it is observed that matrix F has (12n + 1) rows. With
reference to Tables 7.5, 7.6 and 7.7 it is observed that matrix F has (33n+ 22) columns.
Hence the matrix dimension of F for this transformer model is (12n+ 1)× (33n+ 22). In
practice F is generated in software via algorithmic sequences for each branch link combi-
nation. Due to its relatively large size, only the derivation of row one is demonstrated.
The remaining rows can be derived in a similar fashion for each FRA test.

7.6.5 Cutset Example: Branch vIN (Row 1)10

To examine the application of a cutset to branch vIN , which is the first row of F, a zoomed
in view of the relevant portions of Figure 7.4 is shown in Figure 7.8. The first step is to
consider the capacitive links to determine FV S of (7.7). The affected links (columns) and
their respective polarity relative to the cutset are as follows,

+ Cgx1, +CSx1, +CSX1, + CXY 1, + CgX1, − CZX1,

+ CZX(n+1), + CgZ(n+1), −CY Z(n+1), −CSZ(n), +CZz(n+1) (7.78)

10Note that for consistency, the column index that is used in this section is relative to the matrix F
column position as specified in the respective Tables 7.5, 7.6 and 7.7.
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Column Link

1 Cgx1

2 CXx(n+1)

3 CY y(n+1)

4 CZz(n+1)

5 Cgy(n+1)

6 Cgz(n+1)

7 CSX1

...
...

n+ 6 CSX(n)

n+ 7 CSY 1

...
...

2n+ 6 CSY (n)

2n+ 7 CSZ1

...
...

Column Link

3n+ 6 CSZ(n)

3n+ 7 CSx1

...
...

4n+ 6 CSx(n)

4n+ 7 CSy1

...
...

5n+ 6 CSy(n)

5n+ 7 CSz1
...

...

6n+ 6 CSz(n)

6n+ 7 CXY 1

...
...

7n+ 7 CXY (n+1)

7n+ 8 CY Z1

Column Link
...

...

8n+ 8 CY Z(n+1)

8n+ 9 CZX1

...
...

9n+ 9 CZX(n+1)

9n+ 10 CgX1

...
...

10n+ 10 CgX(n+1)

10n+ 11 CgY 1

...
...

11n+ 11 CgY (n+1)

11n+ 12 CgZ1

...
...

12n+ 12 CgZ(n+1)

Table 7.5: Alignment between the normal tree capacitance links and the corresponding
columns of F

vIN

LX1

CSX1

RSX1

CSx1

RSx1

CXx1

CZX1 CXY1

Cgx1

x

X
GX1

Gx1 Lx1

Rgx1

RXx1 RXx2

RgX1 CgX1

CSZ(n)

RSZ(n)

X
LZ(n)

RZz(n+1)

CZz(n+1)

CYZ(n+1) CZX(n+1)

RgZ(n+1) CgZ(n+1)

Figure 7.8: Zoomed in view of Figure 7.4 with a cutset applied to branch vIN .
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Column Link

12n+ 13 RSX1

...
...

13n+ 12 RSX(n)

13n+ 13 RSY 1

...
...

14n+ 12 RSY (n)

14n+ 13 RSZ1

...
...

15n+ 12 RSZ(n)

15n+ 13 RSx1

...
...

16n+ 12 RSx(n)

16n+ 13 RSy1

...
...

17n+ 12 RSy(n)

17n+ 13 RSz1

Column Link
...

...

18n+ 12 RSz(n)

18n+ 13 RgX1

...
...

19n+ 13 RgX(n+1)

19n+ 14 RgY 1

...
...

20n+ 14 RgY (n+1)

20n+ 15 RgZ1

...
...

21n+ 15 RgZ(n+1)

21n+ 16 Rgx1

...
...

22n+ 16 Rgx(n+1)

22n+ 17 Rgy1

...
...

Column Link

23n+ 17 Rgy(n+1)

23n+ 18 Rgz1
...

...

24n+ 18 Rgz(n+1)

24n+ 19 RXx1

...
...

25n+ 19 RXx(n+1)

25n+ 20 RY y1

...
...

26n+ 20 RY y(n+1)

26n+ 21 RZz
...

...

27n+ 21 RZz(n+1)

27n+ 22 RT

- -

- -

Table 7.6: Alignment between the normal tree resistance links and the corresponding
columns of F

Column Link

27n+ 23 LX1

...
...

28n+ 22 LX(n)

28n+ 23 LY 1

...
...

29n+ 22 LY (n)

Column Link

29n+ 23 LZ1

...
...

30n+ 22 LZ(n)

30n+ 23 Lx1

...
...

31n+ 22 Lx(n)

Column Link

31n+ 23 Ly1

...
...

32n+ 22 Ly(n)

32n+ 23 Lz1
...

...

33n+ 22 Lz(n)

Table 7.7: Alignment between the normal tree inductive element links and the corre-
sponding columns of F
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From (7.78) and Table 7.5, for the F matrix column order of the capacitor links, the
voltage branch to capacitance link submatrix FV S is given by 11,

FV S =
[
11 02 03 14 05 06 17 08 · · · 0(3n+5) − 1(3n+6) 1(3n+7)

0(3n+8) · · · 0(6n+6) 1(6n+7) 0(6n+8) · · · 0(8n+7) − 1(8n+8)

− 1(8n+9) 0(8n+10) · · · 0(9n+8) 1(9n+9) 1(9n+10) 0(9n+11) · · ·

0(12n+11) 1(12n+12)

]
1×(12n+12)

. (7.79)

Similarly, for the same cutset the resistive links and their respective polarity relative to
the cutset are as follows,

+Rgx1, +RSx1, +RSX1, +RgX1, +RgZ(n+1), −RSZ(n), +RZz(n+1) . (7.80)

With reference to Table 7.6, this translates into a voltage branch to resistive link subma-
trix FV R of,

FV R =
[
1(12n+13) 0(12n+14) · · · 0(15n+11) − 1(15n+12) 1(15n+13) 0(15n+14)

· · · 0(18n+12) 1(18n+13) 0(18n+14) · · · 0(21n+14) 1(21n+15) 1(21n+16)

0(21n+17) · · · 0(27n+20) 1(27n+21) 0(27n+22)

]
1×(15n+10)

. (7.81)

The inductive links and their respective polarity relative to the cutset of vS are,

+ Lx1, +LX1, −LZ(n) . (7.82)

With reference to Table 7.7, this translates into a voltage branch to inductive element
link submatrix FV L of,

FV L =
[
1(27n+23) 0(27n+24) · · · 0(30n+21) − 1(30n+22)

1(30n+23) 0(30n+24) · · · 0(33n+22)

]
1×6n

. (7.83)

Submatrices FV S (7.79), FV R (7.81) and FV L (7.83) make up the first row of the
tree branch to link coupling matrix F (7.7) for the High Voltage Winding End to End
Open Circuit FRA test model. The remaining entries of F can be determined in a similar
fashion through the application of a cutset to each of the branch elements. In addition,
applying this approach to the network trees of Figures 7.5 and 7.6 will facilitate the
determination of the coupling matrix F for the Low Voltage Winding End to End Open
Circuit and Capacitive Interwinding FRA test models.

11A matrix position index is used in the following sections to clearly identify each matrix entry’s
location. For example, the entry −1(3n+6) indicates that for the n section model the row matrix entry at
position (3n + 6) is −1.
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7.6.6 Determining the Output Voltage

The proposed method used to determine vOUT (s), which is the voltage across RT , is
to determine the voltage across the branch capacitors. Mathematically, this approach
is defined in (7.67). In this relationship, the matrix W is used to sum the appropriate
branch capacitors of vC(s). For the system model of Figure 7.4, vOUT is the combined
voltage across the branch capacitors Cgy1 and CY y1. From 7.66,

vC(s) =
[
vCgx2 · · · vCgx(n+1) vCgy1 · · · vCgy(n) vCgz1 · · · vCgz(n)

vCXx1 · · · vCXx(n) vCY y1 · · · vCY y(n) vCZz1 · · · vCZz(n)

]T
6n×1

.(7.84)

Therefore matrix W can be defined as,

W =
[
01 · · · 0n 1(n+1) 0(n+2) · · · 04n 1(4n+1) 0(4n+2) · · · 06n

]
1×6n

. (7.85)

The example has shown how to generate the relevant matrix relationships required to
obtain the transfer function between terminals A and B of a model based on Figure 7.4.
This same approach can be followed in order to generate any of the FRA test transfer
functions based on the models given in Figures 7.4, 7.5 and 7.6.

7.7 Conclusion

The aim of this chapter was to develop flexible power transformer models based on a
number of different types of FRA tests. To achieve this, a layered modelling approach
was adopted. The first layer consisted of three instances of the generic phase model
derived in Chapter 6. The second layer was the transformer vector group where both
Dyn1 and Dyn11 connections were considered. The third layer was the prescribed FRA
test connection. For this layer, three different types of FRA test were considered, i.e. the
High Voltage End to End Open Circuit, the Low Voltage End to End Open Circuit and
the Capacitive Interwinding tests.

The resulting models were then converted into a mathematical form by producing an
equivalent network tree for each type of FRA test. This facilitated the generation of a
state space representation which was then converted into a transfer function.

Taking into account the three terminal permutations, the three types of FRA test,
and the two different vector groups that are considered, a generic transfer function was
developed that can have up to 18 individual variants (9 for Dyn1 and 9 for Dyn11). The
procedural steps required to generate each of the individual transfer functions is the same.
In an example to demonstrate the procedure, the transfer function of the High Voltage
Winding End to End Open Circuit FRA test between terminals A and B of a Dyn1
connected transformer was determined. In this example each of the parameter matrices
was defined and the derivation of the branch to link coupling matrix was given.
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Chapter 8

Initial Parameter
Estimates and Constraints

8.1 Introduction

In this chapter we formulate a methodology to obtain initial estimates and constraints
for several transformer parameters. Each of these is based on readily available informa-
tion such as transformer nameplate details, routine test data, external dimensions, and
common transformer manufacturing design rules. The constraints provide the estimation
algorithm (as discussed in Chapter 9) with upper and lower bounds to ensure that the
parameter solution is physically feasible. The initial estimate is used to seed the param-
eter estimation algorithm, and in conjunction with the constraints, serves to prevent the
estimation algorithm converging to a local minimum. To demonstrate applicability, the
initial parameter estimates and constraints in the following sections are applied to a range
of power transformers of varying age and manufacture, ranging in size from 200kVA to
18MVA.

This chapter is structured in the following manner. Section 8.2 highlights the impor-
tance of having a constrained estimator when fitting the proposed transformer model to
a data set. It also examines the difficulties related to obtaining detailed internal speci-
fications of a power transformer. Section 8.3 derives the initial parameter estimate and
constraints for the transformer winding conductor cross sectional area. Section 8.4 derives
a relationship which determines the winding resistance from a resistance test between ter-
minals for delta and star connection topologies. Section 8.5 derives the initial parameter
estimate and constraints for the winding conductor length. Section 8.6 derives the initial
parameter estimate and constraints for the mean diameter of the HV winding. Sections
8.7 and 8.8 derive the initial parameter estimate and constraints for the number of turns
on the HV and LV windings respectively. Section 8.9 derives the initial parameter esti-
mate and constraints for the dimensions of the transformer core. Section 8.10 derives the
initial parameter estimate and constraints for the transformer core cross sectional area.



160 CHAPTER 8. INITIAL PARAMETER ESTIMATES AND CONSTRAINTS

Concluding remarks are then given in Section 8.11.

8.2 Background

A fundamental goal of this research is to develop a power transformer model which can
be used to interpret the results obtained from frequency response analysis. During the
process of fitting a model to a data set, it is imperative to ensure that the estimated pa-
rameters are physically representative of the transformer under test. An estimator that
is not constrained can converge on a parameter set which may satisfy the objective func-
tion but is not physically representative of the transformer [30]. It is therefore important
to constrain the model parameters. This can be achieved by incorporating as many of
the known electrical and mechanical properties of the transformer as possible, into the
estimation algorithm. Manufacturer’s proprietary restrictions will generally make access
to detailed design drawings difficult. In addition, the world wide power transformer pop-
ulation is relatively aged (the average age of a power transformer in the United States
is almost 40 years [90]). Obtaining relevant design documentation for equipment built
decades ago can be quite a problem. It is well known that failure probability increases sig-
nificantly in the final quartile of a transformer’s life [90], hence it is the older transformers
where routine condition monitoring is most critical and the lack of design documentation
is most prevalent. In this light, we seek to utilise all of the readily available information
in order to determine an appropriate initial estimate and corresponding set of constraints
for use in an estimation algorithm in Chapter 9.

8.3 Cross Sectional Area of Winding Conductors

The winding conductors of an oil filled power transformer are typically designed to have
an operating current density in the range of 2 to 4 A/mm2 [53]. Hence for the majority
of transformers it is possible to obtain upper and lower bounds on the conductor cross
sectional area based on the transformer winding’s current rating. On this basis, for a star
connected winding, constraints on the conductor cross sectional area can be given by,

[ACL, ACU ] =
iHR
[4, 2]

mm2 , (8.1)

where ACL and ACU represent the lower and upper bounds respectively and iHR is the
current rating of the winding. For a delta connection, taking into account the winding
current relative to the terminal current, constraints on the conductor cross sectional area
are given by,

[ACL, ACU ] =
iHR√
3[4, 2]

mm2 . (8.2)
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A generic form of (8.1) and (8.2) can be formulated by utilising a scaling factor κ where,

κ =

1 Star connected winding
√

3 Delta connected winding .
(8.3)

Therefore, the generic form of (8.1) and (8.2) is,

[ACL, ACU ] =
iHR
2κ

[
1
2
, 1

]
mm2 . (8.4)

A convenient initial parameter estimate for the conductor cross sectional area is the
midpoint of the constraints,

ÂC =
3iHR
8κ

mm2 . (8.5)

To demonstrate the veracity of the relationships (8.4) and (8.5), an example follows.

Example : Calculation of the initial parameter estimate and constraints for
the conductor cross sectional area of the high and low voltage windings of
a Dyn1 1.3MVA 11kV/433V distribution transformer.

The vector group for this distribution transformer is Dyn1 hence the high voltage side
is delta connected. The nameplate rating for the HV current is 73A. Substituting the
nameplate rating into (8.4), where κ =

√
3 for the delta connection, yields the following

constraints,

[ACL, ACU ]HV =
73

2×
√

3

[
1
2
, 1

]
= [10.5, 21] mm2 . (8.6)

From (8.5), the corresponding initial parameter estimate is,

[ÂC ]HV =
3× 73
8×
√

3
= 15.8 mm2 . (8.7)

The actual high voltage winding conductor cross sectional area is 13.6mm2. This value
is within the constraints specified in (8.6). The initial parameter estimate of 15.8mm2

has an error relative to the actual cross sectional area of 16%. Application of (8.4)
and (8.5) to a star connected winding, is suitably demonstrated via the distribution
transformer’s secondary. The nameplate current rating is 1777 A. The corresponding
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Transformer Description Act. LB Est. UB Err. (%)

18MVA 33kV/6.6kV Dyn11 72.45 45.45 68.18 90.91 6

15MVA 33kV/11kV Dyn11 62.50 37.88 56.82 75.76 9

5MVA 66kV/11kV Dyn11 11.62 6.31 9.47 12.63 19

1.3MVA 11kV/433V Dyn1 13.60 10.54 15.80 21.07 16

200kVA 11kV/433kV Dyn11 2.80 1.52 2.27 3.03 19

Table 8.1: High voltage winding conductor cross sectional area for several power trans-
formers. Dimensions are in mm2.

constraints based on a star connection are,

[ACL, ACU ]LV =
1777
2× 1

[
1
2
, 1

]
mm2 .

= [444, 889] mm2 . (8.8)

The secondary winding conductor cross sectional area initial parameter estimate is,

[ÂC ]LV =
3× 1777

8× 1
= 666 mm2 . (8.9)

The actual low voltage winding conductor cross sectional area is 710mm2 which is
within the constraints specified in (8.8). The relative error of the initial parameter
estimate to the actual cross sectional area is 6%.

The Act. column of Table 8.1 lists the high voltage winding conductor cross sectional
areas of five different power transformers. The parameter lower bound, LB, and upper
bound, UB, are given for each case. All examples are within the specified limits. The
initial parameter estimates are listed in the Est. column. The relative error between the
actual cross sectional area and the initial parameter estimate is listed in the Err. column
as a percentage. The worst case error is 19%.

This section has defined the initial parameter estimate and constraints for the winding
conductor cross sectional area of a transformer. The relationships were applied to power
transformers, of various size, and resulted in the constraints bounding all of the actual
values. The worst case relative error for the initial parameter estimate was 19%, which
is more than satisfactory for an initial value to be used in an estimation algorithm. The
relationships developed in this section form an important building block for subsequent
sections.
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8.4 Winding Resistance

As part of a routine test schedule for a transformer, winding resistance is a typical mea-
surement [53]. Due to the large copper cross sectional areas of the conductors, a power
transformer winding will have a resistance that is relatively small. Under these circum-
stances, to obtain an accurate measurement it is necessary to use a precision instrument,
e.g. a Wheatstone bridge.

When the winding under test is of a star connection topology, the measurement can
be taken between two of the terminals with the other terminals left open circuit, see
Figure 8.1(a). The resistance measurement is effectively taken across two windings in
series,

RW =
RTT

2
Ω , (8.10)

where RW is the winding resistance for an individual phase and RTT is the measured
resistance between two terminals.

For the case of a delta connected winding, see Figure 8.1(b), there is a series and
parallel combination to be considered. In this case it is assumed that all windings are
identical in terms of their resistance, hence,

RTT =
RW .(RW +RW )
RW +RW +RW

. (8.11)

Rearranging (8.11) in terms of the winding resistance RW ,

RW =
3RTT

2
Ω . (8.12)

As in the previous section, a generic formulation of (8.10) and (8.12) can be made
through the use of the connection scaling factor κ, where,

RW =
κ2RTT

2
Ω . (8.13)

The winding resistance can be used to determine the DC winding resistance term in the
transformer model. By incorporating the cross sectional area estimate from Section 8.3,
constrained estimates for the skin effect can also be realised. In addition, the winding
resistance is used to estimate the winding conductor length which in turn is used to
determine the number of HV winding turns .

8.5 Conductor Length

The copper and associated alloys that are used in power transformer manufacture have
a conductivity of approximately σ = 58× 106 [53]. As is well known, the resistance of a
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Figure 8.1: Measurement of winding resistance utilising a Wheatstone bridge (WB); (a)
Star connection, (b) Delta connection

conductor of length l and cross sectional area A can be defined as,

R =
l

σA
. (8.14)

By rearranging (8.14) together with the relationships derived for cross sectional area in
Section 8.3 and resistance in Section 8.4, the constraints for the winding conductor length
can be determined,

[lCL, lCU ] = σRW [ACL, ACU ]× 10−6 m

= σ

(
κ2RTT

2

)
.
iHR
2κ

[
1
2
, 1

]
× 10−6 m

∴ [lCL, lCU ] =
σκRTT iHR

4

[
1
2
, 1

]
× 10−6 m . (8.15)

In (8.15) lCL and lCU represent the lower and upper bounds respectively, and iHR is the
rated current for the HV winding.

The initial parameter estimate for the winding conductor length is taken as the mid-
point between the constraints,

l̂C =
3σκRTT iHR

16
× 10−6 m . (8.16)

The initial parameter estimate and constraints for the winding conductor length, (8.16)
and (8.15) respectively, are demonstrated in the following example.
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Transformer Description Act. LB Est. UB Err. (%)

18MVA 33kV/6.6kV Dyn11 1444 906 1359 1812 6

15MVA 33kV/11kV Dyn11 1572 953 1429 1906 9

5MVA 66kV/11kV Dyn11 3595 1953 2930 3906 19

1.3MVA 11kV/433V Dyn1 1208 839 1258 1678 4

200kVA 11kV/433kV Dyn11 1610 940 1410 1880 12

Table 8.2: High voltage winding conductor length for several power transformers. Dimen-
sions are in metres.

Example : Calculation of the initial parameter estimate and constraints
for the conductor length of the high voltage winding of a Dyn1 1.3MVA
11kV/433V distribution transformer.

To determine the constraints for the high voltage winding conductor length of the
transformer, reference is made to (8.15). Since the high voltage winding is delta con-
nected, κ =

√
3. The current rating is directly obtained from the nameplate details,

iHR = 73A. Finally, the resistance is accurately measured between two high voltage
terminals using a Yokogawa wheatstone bridge. The results obtained were, 0.92Ω be-
tween the A and B terminals, and 0.91Ω between the B and C terminals. Taking the
mean resistance together with the rated current and substituting into (8.15),

[lCL, lCU ]HV =
58× 106 ×

√
3× 0.915× 73
4

[
1
2
, 1

]
× 10−6 m

= [839, 1678] m . (8.17)

The corresponding initial parameter estimate is,

l̂C =
839 + 1678

2
= 1258 m . (8.18)

The actual winding conductor length is 1208 metres which is within the constraints
[839, 1678]. The initial parameter estimate of 1258 metres is only in error by 4% relative
to the actual winding conductor length.

Table 8.2 presents the high voltage winding conductor lengths of a range of power
transformers. In all cases, the conductor lengths are within the calculated constraints,
UB and LB respectively. The worst case relative error for the initial parameter estimate
is 19%.
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The initial parameter estimate and constraints developed in this section utilise infor-
mation that can readily be obtained on site, and as such, are quite useful for modelling
purposes. These relationships are fundamental to Section 8.7 which quantifies the number
of turns in the HV and LV windings.

8.6 Mean Diameter of the High Voltage Winding

It is proposed that an approximation for the mean diameter of the high voltage winding
can be obtained by utilising the transformer external tank dimensions. This is achieved
by taking advantage of the “approximately” symmetrical structure of a power transformer
relative to the overall tank dimensions. A cross sectional top view of the Dyn1 1.3MVA
11kV/433V distribution transformer, which has been used as an example in previous
sections, is presented in Figure 8.2. All of the dimensioned items in this figure are to
scale.

It can be observed in Figure 8.2, that the structural layout often has many symmetri-
cal features. In addition, it is noted that the high voltage winding is generally the outside
winding in power transformer construction. The feature exploited here is the relative sim-
ilarity between the high voltage winding outside diameter, and the corresponding distance
to the tank end and side walls (∆EW and ∆SW respectively). Though these distances
may vary considerably due to tap changer position, bus bar routing and other construc-
tion features, relative to the overall tank dimensions, lTL× lTW , the four dimensions can
be considered to be proportionally similar.

Assumption 1. From the above discussion a generic high voltage winding to tank wall
distance of ∆W is assumed,

∆W ≈ ∆EW ≈ ∆SW . (8.19)

From Figure 8.2 and with reference to (8.19), it can be observed that the overall length
of the tank, lTL, can be decomposed into the following terms,

lTL ≈ 2∆W + 3ΘHOD + 2δHV , (8.20)

where ∆W is the distance between the tank end wall and the high voltage winding outside
diameter, ΘHOD is the high voltage winding outside diameter, and δHV is the clearance
distance between two adjacent high voltage windings.

Assumption 2. The overall length of the transformer tank, lTL, is much greater than
the distance between two adjacent high voltage windings, δHV ,

lTL � 2δHV . (8.21)
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Figure 8.2: Top view cross section of a Dyn1 1.3MVA 11kV/433V distribution transformer.
Dimensioned items are to scale.
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Therefore the overall tank length relationship, (8.20), can be rewritten as,

lTL ≈ 2∆W + 3ΘHOD . (8.22)

Similarly, as can be seen in Figure 8.2 and with reference to (8.19), the overall tank width
can be decomposed into the following terms,

lTW ≈ 2∆W + ΘHOD , (8.23)

where in this case ∆W is the distance between the tank side wall and the high voltage
winding outside diameter. Subtracting (8.23) from (8.22) gives,

lTL − lTW ≈ 2ΘHOD . (8.24)

Rearranging (8.24),

ΘHOD ≈
lTL − lTW

2
. (8.25)

The diameter of a high voltage winding turn is dependent upon its position within the
layer of an individual disc. With reference to Figure 8.2, it is observed that the variation
between the inside and outside diameter of the high voltage winding disc is given by αHV .
Therefore, the mean diameter of a high voltage disc, ΘH , can be considered to be,

ΘH = ΘHOD − αHV . (8.26)

Assumption 3. Since the outside diameter is typically much larger than the diameter
variation, αHV , this work assumes that the outside diameter of the high voltage disc
approximates the mean diameter,

ΘHOD � αHV (8.27)

∴ ΘH ≈ ΘHOD . (8.28)

Equating (8.25) with (8.28),

ΘH ≈
lTL − lTW

2
, (8.29)

where ΘH is the mean high voltage winding diameter estimate based on the external tank
dimensions of a transformer.

To demonstrate in a practical manner the validity of the assumptions utilised to
derive (8.29), the dimensions of two distribution transformers are used as case studies.
The two transformers are a 1.3MVA 11kV/433V and a 200kVA 11kV/433V distribution
transformer. To accomplish this we first measure and record the dimensions that are
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Dimension Reference 1.3MVA 11kV/433V 200kVA 11kV/433V

lTL 1980 1100

lTW 1010 525

lY 1090 660

ΘHOD 505 305

αHV 45 30

δHV 40 25

∆EW1 210 100

∆EW2 210 100

∆SW1 260 130

∆SW2 260 130

Table 8.3: Actual 1.3MVA and 200kVA distribution transformer dimensions with respect
to Figure 8.2. All dimensions are in millimetres.

specified in Figure 8.2. These values are listed in Table 8.3.

Relative error case study for Assumption 1 :

The first assumption is that the end wall and side wall spacing with respect to the high
voltage winding would be proportionally similar with respect to the outer dimensions
of the tank, (8.19). In order to quantify the relative error of this approximation, the
absolute value of the difference between ∆EW and ∆SW , with respect to the tank
width, can be considered,

Error% =
|∆SW −∆EW |

lTW
× 100 . (8.30)

For the two distribution transformers we have,

Error% (1.3MVA) =
|260− 210|

1010
× 100 = 5% (8.31)

Error% (200kVA) =
|130− 100|

525
× 100 = 6% . (8.32)

It can be observed from (8.31) and (8.32), that the relative error is indeed small and
therefore the assumption regarding the similarities of the dimensions is appropriate for
these two transformers.
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Relative error case study for Assumption 2:

Assumption 2 was lTL � 2δHV , (8.21). The relative error in this case is,

Error% =
2δHV
lTL

× 100 . (8.33)

For the two distribution transformers,

Error% (1.3MVA) =
2× 40
1980

× 100 = 4% (8.34)

Error% (200kVA) =
2× 25
1100

× 100 = 5% (8.35)

Once again, the relative error for both transformers based on the assumption that
lTL � 2δHV , is small.

Relative error case study for Assumption 3:

Assumption 3 is that the difference between the inner and outer diameters of the high
voltage winding, αHV , is small relative to the outer diameter value, ΘHOD (8.27),

Error% =
αHV

ΘHOD
× 100 . (8.36)

For the two distribution transformers,

Error% (1.3MVA) =
45
505
× 100 = 9% (8.37)

Error% (200kVA) =
30
305
× 100 = 10% (8.38)

The assumption that αHV is small when compared to the outer diameter leads to
relative errors for the 1.3MVA transformer of 9% and the 200kVA transformer of 10%.
These errors are reasonably small and represent an acceptable approximation for the
intended application.

It has been demonstrated for the two transformers in the case studies that the assump-
tions made to determine ΘH resulted in only small relative errors. To accommodate the
broader spectrum of transformer designs, it is proposed that constraints based on ±20%
be defined. Hence from (8.29), constraints for the mean winding diameter are proposed
to be,

[ΘHL,ΘHU ] =
lTL − lTW

2
[80%, 120%] =

lTL − lTW
5

[2, 3] m , (8.39)

where ΘHU and ΘHL are the upper and lower bounds respectively. The initial parameter
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estimate for the mean high voltage winding diameter, from (8.29), is,

Θ̂H =
lTL − lTW

2
m . (8.40)

The initial parameter estimate and constraints of (8.40) and (8.39) are verified in the
following example.

Example : Calculation of the initial parameter estimate and constraints
for the mean diameter of the high voltage winding of a Dyn1 1.3MVA
11kV/433V distribution transformer.

From (8.40) and with reference to Table 8.3 for the 1.3MVA transformer,

Θ̂H =
lTL − lTW

2
=

1980− 1010
2

= 485 mm . (8.41)

From (8.39), the parameter constraints are,

[ΘHL,ΘHU ] = [388, 582] mm .

Hence, based on the transformer tank dimensions, the initial parameter estimate for
the mean high voltage winding diameter is 485mm with constraints of [388,582]. The
mean diameter using actual measurements is,

ΘH = ΘHOD − αHV = 505− 45 = 460 mm. (8.42)

This results in a relative error of 5% which is well within the specified constraints.

Table 8.4 compares the actual mean high voltage winding diameter to the calculated
initial parameter estimate and constraints of a range of power transformers. The table
also lists the relative error between the actual mean diameter and the estimated value
(column Err.). The largest relative error is just 11% with all cases well within their
constraints, the practical applicability of this technique has been verified.

This section has proposed an approximation to the mean high voltage winding di-
ameter using only the external dimensions of the transformer tank. The validity of the
proposed relationships has been demonstrated on a variety of power transformers. The
results considering the nature of the approximation are very good. It is acknowledged
that these relationships will not always be applicable, however, in many cases it will fa-
cilitate a useful and non-intrusive initial approximation of the mean high voltage winding
diameter.
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Transformer Description Act. LB Est. UB Err. (%)

18MVA 33kV/6.6kV Dyn11 701 624 780 936 11

15MVA 33kV/11kV Dyn11 664 540 675 810 2

5MVA 66kV/11kV Dyn11 636 512 640 768 1

1.3MVA 11kV/433V Dyn1 460 388 485 582 5

200kVA 11kV/433kV Dyn11 275 230 288 345 5

Table 8.4: Mean high voltage winding diameter for several power transformers. Dimen-
sions are in millimetres.

8.7 Number of High Voltage Winding Turns

Utilising the winding cross sectional area constraints from Section 8.3, together with
an accurate measurement of the winding resistance, constraints for the length of the
winding conductor were obtained in Section 8.5. In addition, a relationship to determine
an approximation for the mean diameter of the high voltage winding was formulated in
Section 8.6. By combining these results, it is possible to derive constraints for the number
of turns in the high voltage winding.

The number of turns in a high voltage winding, NH , can be approximated by the total
winding conductor length, lH , divided by the circumference, πΘH , where ΘH is the mean
high voltage winding diameter. Hence the number of high voltage winding turns is,

NH =
lH
πΘH

. (8.43)

Substituting (8.15) and (8.39) into (8.43) for the corresponding winding conductor length,
lH , and mean winding diameter, ΘH , constraints for the number of turns in the high
voltage winding are given by,

[NHL, NHU ] =

(
σκHRHTT iHR

4

[
1
2
, 1

]
× 10−6

)
.

(
π

(
lTL − lTW

)
5

[2, 3]

)−1

=
5σκHRHTT iHR

[
1
2 , 1
]

4π
(
lTL − lTW

) [
2, 3
] × 10−6

∴ [NHL, NHU ] =
5σκHRHTT iHR

24π
(
lTL − lTW

) [1, 3]× 10−6 turns . (8.44)

In (8.44), the upper and lower bounds are NHL and NHU respectively. In addition, κH
is the high voltage winding connection scaling factor (8.3), RHTT is the high voltage
winding inter-terminal resistance and iHR is the high voltage terminal current rating.

Using the constraint midpoint from (8.44) as the initial parameter estimate for the
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number of HV winding turns, N̂H ,

N̂H =
5σκHRHTT iHR

12π
(
lTL − lTW

) × 10−6 turns . (8.45)

In order to demonstrate the applicability of (8.44) and (8.45), an example follows.

Example : Calculation of the initial parameter estimate and constraints
for the number of turns in the high voltage winding of a Dyn1 1.3MVA
11kV/433V distribution transformer.

The typical value for the conductor conductivity is σ = 58× 106 MS/m [53]. From the
transformer’s nameplate and external measurements, the following details are obtained:

1. Vector group is Dyn1 ⇒ High voltage winding is in delta ⇒ κH =
√

3

2. Resistance between high voltage terminals ⇒ RHTT = 0.915 Ω

3. Nameplate rated HV current ⇒ iHR = 73A

4. Transformer tank length ⇒ lTL = 1980mm

5. Transformer tank width ⇒ lTW = 1010mm

Substituting these values into (8.44),

[NHL, NHU ] =
5× 58× 106 ×

√
3× 0.915× 73

24π
(

1980− 1010
)
× 10−3

[
1, 3
]
× 10−6 turns

which results in the HV winding turn constraints of,

[NHL, NHU ] = [459, 1376] turns . (8.46)

The initial parameter estimate, N̂H , is the midpoint of (8.46),

NH ≈
NHU +NHL

2
=

1376 + 459
2

= 917 . (8.47)

The actual number of transformer turns is 852 which is within the constraints of (8.46).
The initial parameter estimate for the number of turns, from (8.47), is 917. The relative
error of the initial parameter estimate to the actual number of turns is 8%.

This approach is now applied to a range of power transformers with the results pre-
sented in Table 8.5. From the table it is clear that the actual number of turns is within
the limits in each case. The initial parameter estimate had a worst case relative error of
just 10%.
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Transformer Description Act. LB Est. UB Err. (%)

18MVA 33kV/6.6kV Dyn11 656 308 616 925 6

15MVA 33kV/11kV Dyn11 754 375 749 1124 1

5MVA 66kV/11kV Dyn11 1800 810 1620 2430 10

1.3MVA 11kV/433V Dyn1 852 459 917 1377 8

200kVA 11kV/433kV Dyn11 1864 868 1736 2603 7

Table 8.5: The number of high voltage winding turns for each phase of a range of power
transformers of varying size.

This section has derived relationships to determine the initial parameter estimate and
constraints for the number of turns in the high voltage winding of a power transformer.
These approximations relied upon nameplate parameters and external measurements only.
The approach has been verified against a range of power transformers.

8.8 Number of Low Voltage Winding Turns

In Section 8.7, relationships were derived in order to determine an initial parameter
estimate and constraints for the number of turns in a transformer’s HV winding. Using
these relationships, together with the transformer’s vector group and nameplate voltage
ratings, similar relationships can be derived for the number of turns in a transformer’s LV
winding. In Section 2.9.1 the transformer’s voltage gain with respect to the transformer
turns ratio, ā, was derived for each vector group. The results were provided in Table 2.3.

From Table 2.3, both the Dd and Yy vector groups have a turns ratio of,

ā =
vHR
vLR

, (8.48)

where vHR and vLR are the nameplate voltage ratings for the transformer’s high and low
voltage sides respectively.

For the Dy vector group, from Table 2.3, the turns ratio is given by,

ā =
√

3vHR
vLR

. (8.49)

For the Yd vector group, the turns ratio is given by,

ā =
vHR√
3vLR

. (8.50)

The transformer turns ratios, (8.48), (8.49) and (8.50), are defined for each vector
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Vector Group Transformer Turns Ratio (ā)

Dd vHR
vLR

Dy
√

3vHR
vLR

Yd vHR√
3vLR

Yy vHR
vLR

Table 8.6: Vector group relationship with the transformer turns ratio

group in Table 8.6. Rearranging the transformer turns ratio, (2.5), in terms of NL,

NL =
NH

ā
. (8.51)

The equations (8.48), (8.49) and (8.50) are the ideal case. For the turns ratio the assump-
tion is generally made that the applied terminal voltage is equivalent to the magnetising
electromotive force [51], that is, with reference to Figure 2.14, vX ≈ emX . This approxi-
mation is appropriate as it is understood that the no load current of a transformer is very
small relative to its full load current (0.2 to 2%) [71]. The small error introduced by this
assumption is satisfactorily encompassed within the constraints of NH defined in (8.44).
On this basis, with reference to (8.44) and (8.51), the constraints for the number of turns
in the low voltage winding is,

[NLL, NLU ] =
[NHL, NHU ]

ā

=
5σκHRHTT iHR

24āπ
(
lTL − lTW

) [1, 3]× 10−6 turns . (8.52)

The corresponding initial parameter estimate N̂L is given by,

N̂L =
5σκHRHTT iHR

12āπ
(
lTL − lTW

) × 10−6 turns , (8.53)

An example follows 1.

Example : Calculation of the initial parameter estimate and constraints for
the number of turns in the low voltage winding of an 18MVA 33kV/6.6kV
Dyn11 power transformer.

The constraints for the number of turns in the low voltage winding of the 18MVA
transformer can be determined with reference to the high voltage winding equivalent
1The 1.3MVA transformer used in previous examples cannot be used in this section since the exact

number of low voltage turns cannot be accurately determined. The manufacturer provided the number
of turns for the 18MVA transformer used in this example.



176 CHAPTER 8. INITIAL PARAMETER ESTIMATES AND CONSTRAINTS

in Table 8.5 and the Dy connection voltage ratio of Table 8.6. The resulting constraints
are,

[NLL, NLU ] =
6600√

3× 33000
.[308, 925]

= [36, 107] turns . (8.54)

The initial parameter estimate for the number of low voltage winding turns can be
made with reference to the corresponding high voltage initial parameter estimate in
Table 8.5, and the Dy connection voltage ratio of Table 8.6,

N̂L =
616× 6600√

3× 33000
= 71 turns . (8.55)

Hence the low voltage winding of the 18MVA transformer has bounds of between 36
and 107 turns, with an initial parameter estimate of 71 turns. The actual number of
turns for the low voltage winding is 72. This is within the specified constraints, (8.54),
and the initial parameter estimate of 71 turns is in error by less than 2%.

This section has obtained relationships for the initial parameter estimate and con-
straints for the number of turns of the low voltage winding of a power transformer. As
with other relationships in this chapter, only nameplate details and external dimensions
are utilised.

8.9 Transformer Core Linear Dimensions

A parameter that is integral to the development of a geometrically based transformer
model is the reluctance of the transformer’s magnetic core. Reluctance is proportional to
its path length, l, and inversely proportional to its cross sectional area, A. This can be
expressed mathematically as,

R =
l

µA
(8.56)

where µ is the permeability of the core material. A detailed investigation of permeability
is described in Chapter 3.

In this section we are interested in estimating the reluctance path length l. Figure
8.3 presents a three phase, three limb core. Typically the cross sectional area of the yoke
and limbs of a three limb core is the same [53]. Current research has tended to focus on
placing limits on the yoke to limb ratio. In the paper by de Leon [34], a single phase
transformer yoke to limb ratio for a “tall” transformer was 1 : 1 and a “short” transformer
was 4 : 1. However, this research proposes tighter limits by taking into account common
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Figure 8.3: Simplified drawing of the magnetic core of a three limb core form transformer

design practice and external tank dimensions.

8.9.1 Mean Length of the Core Yoke

With reference to Figure 8.2, it can be observed that the mean yoke length, lY , is equiv-
alent to the distance between the two outside winding centres, i.e.

lY = 2ΘHOD + 2δHV . (8.57)

In practice ΘHOD � δHV (for the two distribution transformers whose dimensions are
listed in Table 8.3 the difference is larger than an order of magnitude). Hence a reasonable
approximation for the mean yoke length is,

lY ≈ 2ΘHOD . (8.58)

By substituting the high voltage winding diameter approximation from (8.40) into (8.58),
an estimate for the core yoke length, l̂Y , can be defined in terms of the external dimensions
of the transformer tank,

l̂Y = lTL − lTW . (8.59)

To set appropriate constraints, it is proposed that the limits for the mean yoke length
be based on ±20% of the parameter estimate as per the relationships in Section 8.6. As
such, the mean yoke length constraints are defined as,

[lY L, lY U ] = (lTL − lTW ) [0.8, 1.2] . (8.60)
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Transformer Description Act. LB Est. UB Err. (%)

18MVA 33kV/6.6kV Dyn11 1590 1248 1560 1872 2

15MVA 33kV/11kV Dyn11 1500 1080 1350 1620 10

5MVA 66kV/11kV Dyn11 1440 1024 1280 1536 11

1.3MVA 11kV/433V Dyn1 1090 776 970 1164 11

200kVA 11kV/433kV Dyn11 660 460 575 690 13

Table 8.7: Transformer core mean yoke length for several power transformers. Dimensions
are in millimetres.

The initial parameter estimate and constraints for the mean yoke length of the trans-
former core, (8.59) and (8.60), are obtained by simply finding the difference between the
transformer tank length and width. An example follows.

Example : Calculation of the initial parameter estimate and constraints for
the mean yoke length of a Dyn1 1.3MVA 11kV/433V distribution trans-
former core.

An initial parameter estimate for the mean yoke length, (8.59), requires the external
length and width of the transformer tank. With reference to Table 8.3,

l̂Y = lTL − lTW = 1980− 1010 = 970 mm . (8.61)

The constraints, (8.60), are then given by,

[lY L, lY U ] = 970 [0.8, 1.2] = [776, 1164] mm . (8.62)

With reference to Figure 8.2 and Table 8.3, the actual mean yoke length lY is 1090mm.
This is within the bounds of (8.62). The initial parameter estimate of 970mm is within
11% of the actual value.

This approach is applied to a range of power transformers with the results presented
in Table 8.7. The constraints encapsulate the actual yoke length in all cases with a
maximum initial parameter estimate error of just 13%.

8.9.2 Mean Length of the Core Limb

Estimating the mean limb length is not as straightforward as in the case of the mean
yoke length. Previous sections in this chapter utilised the symmetry of the transformer
to estimate internal dimensions. This is not possible in a generic sense when considering
the core limb length. It is quite common for a power transformer to have tap changer
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Figure 8.4: Side view cross section of a transformer. Based on a Dyn1 1.3MVA 11kV/433V
distribution transformer. Dimensioned items are to scale.
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Dimension Reference 1.3MVA 11kV/433V 200kVA 11kV/433V

lTW 1010 525

lTH 2170 1100

lE 1235 620

ΘCOD 215 150

∆TW1 830 500

∆TW2 520 185

∆SW1 260 130

∆SW2 260 130

Table 8.8: 1.3MVA 11kV/433V and 200kVA 11kV/433V distribution transformer reference
dimensions with respect to Figures 8.2 and 8.4. Dimensions in millimeters.

and connection bus bars positioned above the windings, removing the possibility of any
vertical symmetry that could be used to determine the limb length of the core. A scaled
drawing of the 1.3MVA 11kV/433V distribution transformer is given in Figure 8.4 as an
example. Table 8.8 lists the reference dimensions (including those of a 200kVA 11kV/433
transformer) for Figure 8.4.

Not being able to utilise structural symmetry makes it more difficult to obtain an
approximation for the mean limb length, lE . Some insight is obtained however, by in-
vestigating the implications of the height of a transformer tank, lTH . It is obvious that
the mean core limb height must be significantly less than the tank height. By taking
into account typical clearance distances, bus bar connections and possibly tap changing
equipment mounted in the upper chamber of the tank, it is proposed that an upper bound
for the mean core limb height, lE , could be set to 80% of the tank height,

lEU = 0.8lTH . (8.63)

This is supported empirically by Table 8.9. Furthermore, the core and windings occupy
the majority of the space within a transformer tank. It is improbable for the tank to
be constructed with an absolute limb height that was less than 50% of the tank height.
Therefore, taking into account that the mean height is less than the absolute height, it is
proposed that an appropriate lower bound could be set to,

lEL = 0.4lTH . (8.64)

This is also supported empirically by Table 8.9. On this basis, constraints are proposed
that leverage knowledge of the height of the transformer tank and typical construction
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practices. The mean limb length constraints are then,

[lEL, lEU ] = lTH [0.4, 0.8] (8.65)

From (8.65), an appropriate initial parameter estimate for the mean limb length would
simply be the mid point value of the constraints,

l̂E = 0.6lTH . (8.66)

To demonstrate the mean limb length defined in (8.65) and (8.66), an example follows.

Example : Calculation of the initial parameter estimate and constraints for
the mean limb length of a Dyn1 1.3MVA 11kV/433V distribution trans-
former core.

With reference to Figure 8.4 and Table 8.8, the mean limb length constraints, (8.65),
for the 1.3MVA transformer are,

[lEL, lEU ] = lTH [0.4, 0.8] = [868, 1736] mm . (8.67)

The mean limb length initial parameter estimate from (8.66) is,

l̂E = 0.6lTH = 0.6× 2170 = 1302 mm . (8.68)

The actual mean limb length, l̂E , is 1235mm. This is within the constraints of (8.67),
and the initial parameter estimate of 1302mm is within 5%.

Application of the mean limb length relationships of (8.65) and (8.66) to a range
of power transformers is presented in Table 8.9. In all cases the transformer core limb
lengths are within the prescribed constraints. The largest relative error for the initial
parameter estimate was 17%, however in two cases, the relative error was less than 0.5%.

This section has developed relationships for approximating the mean core yoke and
limb lengths of a power transformer’s magnetic circuit. These relationships rely solely
on the external dimensions of the power transformer’s tank. This is accomplished by
taking advantage of intrinsic design properties and associated structural symmetry. When
applied to a range of power transformers of varying size, the largest initial parameter
estimate error for both the yoke and limb lengths, was 17%. On this basis it is proposed
that this approach is a significant advance over the reliance on a broad yoke to limb ratio
range [34] that is currently employed in research today.
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Transformer Description Act. LB Est. UB Err. (%)

18MVA 33kV/6.6kV Dyn11 1800 1204 1806 2408 0

15MVA 33kV/11kV Dyn11 1950 1080 1620 2160 -17

5MVA 66kV/11kV Dyn11 1610 1078 1617 2156 0

1.3MVA 11kV/433V Dyn1 1235 868 1302 1736 5

200kVA 11kV/433kV Dyn11 620 440 660 880 6

Table 8.9: Transformer core mean limb length for several power transformers. Dimensions
are in millimetres.

8.10 Cross Sectional Area of a Transformer core

As discussed in Section 8.9, to determine the reluctance of a power transformer’s core, it is
necessary to determine its cross sectional area. This section derives the initial parameter
estimate and constraints for the cross sectional area of the core. The derivation utilises
results from previous sections as well as general transformer design principles. As with
the derivations from previous sections, the relationships do not require internal structural
knowledge of the individual transformer.

Faraday’s law states that the induced voltage is proportional to the time rate of change
of flux linkage. From Lenz’s law, this induced voltage must have a polarity that opposes
a change in the flux linkage. Mathematically this can be expressed as,

em = −N d(Φm)
dt

, (8.69)

where em is the induced voltage, Φm the magnetising flux and N the number of winding
turns. When the voltage is sinusoidal, it can be shown [53] that (8.69) can be expressed
in terms of volts per turn, i.e.

em
N

= 4.44fΦm V/turn , (8.70)

where f is the rated frequency of operation in Hertz of the transformer. It can be more
convenient to express (8.70) in terms of the maximum flux density Bmax with respect to
the cross sectional area of the core, ACS ,

em
N

= 4.44BmaxACSf V/turn . (8.71)

Equation (8.71) is an important relationship used by transformer designers. It allows the
designer to determine the output volts per turn based on the peak flux density, core cross
sectional area and operating frequency. In this section (8.71) plays an important role in
facilitating the approximation of the cross sectional area of the core.

Typically, modern power transformers use cold rolled grain oriented silicon steel
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Figure 8.5: B-H Curve for 3.5% silicon electrical steel at 50Hz. (a) Full B-H curve (log
scale). (b) B-H curve highlighting the typical peak operating flux region of a power
transformer (linear scale).

(CRGO) in the manufacture of the core’s laminations. The saturation flux density for
CRGO silicon steel is generally 2.0 T [71]. The point where the B-H curve begins to
saturate is generally referred to as the “knee”. The transformer manufacturer must design
the peak operating flux density to be less than this value due to the significantly greater
magnetising currents required for incremental increases in flux density as saturation is
approached. However, having an operating flux density that is well below the “knee”,
does not utilise all of the core’s potential, ie, it has too much “iron”, and is therefore not
cost effective from a manufacturing perspective. The most effective design is to position
the maximum operating flux density just below the “knee”.

Over excitation of a transformer core can occur with system over-voltage. It is not
uncommon for an electrical system to experience a continuous over-voltage as high as 10%
[53]. The resulting over excitation will lead to an increase in core losses and a resulting
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increase in temperature. System losses like these should be avoided where possible as the
prolonged increase in operating temperature of a transformer will result in a shortened
operating life [83]. As a consequence, a guideline [71] was proposed which is based on the
voltage profile of the transformer application,

BMP =
1.9

(1 + a%)
T , (8.72)

where BMP is the peak operating flux density and a% is a factor dependent on the voltage
profile. Based on this guideline, for a system that has a relatively constant voltage profile,
a small over excitation factor of 5% could be nominated relative to a 1.9T upper bound.
From (8.72),

BMP =
1.9

(1 + 5%)
= 1.8T . (8.73)

Hence giving a nominal peak operating flux of 1.8T. However, in the case where the voltage
profile of a power network was not as constant, a factor of 15% may be nominated which
would result in a peak operating flux of 1.65T. This lower peak operating flux facilitates a
greater tolerance for over-voltage conditions. Typical peak operating flux densities range
between 1.6 and 1.8T for CRGO silicon steel [53, 20]. This nominal range is depicted in
the B-H curve for 3.5% silicon electrical steel at 50Hz, Figure 8.5.

By coupling the knowledge of the typical peak operating flux density range, with the
volt/turn relationship from (8.71), we have,

em
N

= 4.44ACSf [1.6, 1.8] V/turn , (8.74)

where [1.6, 1.8] are the peak flux density constraints. The frequency is a known parameter
and is regionally dependent. Rearranging (8.74) in terms of cross sectional area gives

ACS =
em

4.44fN [1.6, 1.8]
m2 . (8.75)

As discussed in Section 8.8, since the no load current of a transformer is small relative to
its full load current (0.2 to 2%), the applied terminal voltage, V , can be assumed to be
approximately equal to the magnetising electromotive force,

ACS =
V

4.44fN [1.6, 1.8]
=
V [0.125, 0.141]

fN
m2 . (8.76)

The volts per turn relationship is dependent upon the voltage applied to the winding.
The winding voltage is dependent upon the transformer connection topology. For a star
connection, the winding voltage is phase to neutral and for a delta connection, the winding
voltage is phase to phase. However, the transformer nameplate details for voltage are with
respect to its phase to phase voltage. As such, a factor of

√
3 is required to be incorporated

into (8.76) when referring to the nameplate high voltage rating vHR for a star connection.
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Rewriting (8.76) in terms of vHR with respect to the winding connection topology,

[ACSL, ACSU ] =


vHR [0.125,0.141]√

3fN
Star connected winding

vHR [0.125,0.141]
fN Delta connected winding

(8.77)

From Section 8.7, constraints, (8.44), were developed for the number of turns in the
high voltage winding. Restating this relationship for the respective connections and taking
into account the connection scaling factor κ, gives

[NHL, NHU ] =



5σRHTT iHR

24π

(
lTL−lTW

) [1, 3]× 10−6 Star connected winding

5
√

3σRHTT iHR

24π

(
lTL−lTW

) [1, 3]× 10−6 Delta connected winding

(8.78)

The number of turns parameter of (8.77), can be replaced by its respective constraints
from (8.78). It can be observed that by following this substitution for each connection, a
connection independent relationship is obtained,

[ACSL, ACSU ] =
vHR [0.125, 0.141]√

3f
.

24π
(
lTL − lTW

)
5σRHTT iHR

[
1, 3
]
× 10−6

=
8.7vHR

(
lTL − lTW

)
[0.125, 0.141]

fσRHTT iHR

[
1, 3
] × 106

=
vHR

(
lTL − lTW

)
[0.36, 1.23]

fσRHTT iHR
× 106 m2 , (8.79)

for the constraints on the cross sectional area of the transformer core. Taking the midpoint
gives the initial parameter estimate, ÂCS ,

ÂCS =
0.8vHR

(
lTL − lTW

)
fσRHTT iHR

× 106 m2 . (8.80)

Example : Calculation of the initial parameter estimate and constraints
for the cross sectional area of a Dyn1 1.3MVA 11kV/433V distribution
transformer core.

The transformer details are taken from the nameplate and external measurements as
per previous sections,

1. High voltage rating⇒ vHR = 11kV
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Transformer Description Act. LB Est. UB Err. (%)

18MVA 33kV/6.6kV Dyn11 0.159 0.089 0.196 0.303 23

15MVA 33kV/11kV Dyn11 0.138 0.073 0.161 0.249 16

5MVA 66kV/11kV Dyn11 0.119 0.067 0.149 0.230 25

1.3MVA 11kV/433V Dyn1 0.036 0.020 0.044 0.068 21

200kVA 11kV/433kV Dyn11 0.018 0.010 0.023 0.036 28

Table 8.10: Transformer core cross sectional area for several power transformers. Dimen-
sions are in m2.

2. Current rating (high voltage side) ⇒ iHR = 73A

3. Mains frequency ⇒ f = 50Hz

4. Resistance between high voltage terminals ⇒ RHTT = 0.915 Ω

5. Transformer tank length ⇒ lTL = 1980mm

6. Transformer tank width ⇒ lTW = 1010mm

Substituting the values into (8.79) to determine the cross sectional area constraints,

[ACSL, ACSU ] =
11000×

(
1.980− 1.010

)
[0.36, 1.23]

50× 58× 106 × 0.915× 73
× 106

= [0.020, 0.068] m2 . (8.81)

Similarly, from (8.80),

ÂCS =
0.8× 11000×

(
1.980− 1.010

)
50× 58× 106 × 0.915× 73

× 106

= 0.044 m2 , (8.82)

where ÂCS is the initial parameter estimate for the cross sectional area of the trans-
former core. With reference to Figure 8.4 and Table 8.8, the actual cross sectional area
is 0.036m2 which is within the constraints of (8.81) and is 21% less than the initial
parameter estimate value of (8.82).

Application of the cross sectional area relationships of (8.79) and (8.80) to a range of
power transformer cores, is presented in Table 8.10. The actual cross sectional area of the
transformer core is within the constraints in all cases. The largest relative error for the
initial parameter estimate was 28%. Whilst this error is not insignificant, it is more than
satisfactory for the initial parameter estimate of a constrained estimation algorithm.
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8.11 Conclusion

To be able to use a transformer model to diagnose problems based on condition monitoring
data, it is important that the model parameters are physically representative. This can be
accomplished by using tight parameter constraints and accurate initial estimates within
the estimation algorithm. This will minimise the probability of the solution set converging
on a local minima. This chapter has developed relationships for an initial parameter
estimate, with corresponding constraints, for several important transformer modelling
parameters. Since intellectual property restrictions make access to transformer design
documentation rarely possible, these relationships have been developed to use information
such as external transformer dimensions, routine test data, and nameplate details. The
relationships we obtained were successfully applied to a variety of power transformers
ranging in size from 200kVA up to 18MVA 2.

2Due to the demonstrated accuracy of the initial parameter estimates it is proposed that, in the case
of similarly sized transformers, there is justification for a further tightening of the constraints. As a
consequence, key parameters used in Chapter 9 are constrained to the largest relative error observed by
each parameter in this chapter.
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Chapter 9

Practical Application of the
Transformer Model

9.1 Introduction

The purpose of this chapter is to confirm the veracity of the proposed modelling ap-
proach and how it can be used to facilitate the interpretation of FRA. This is achieved by
demonstrating that the estimation algorithm accurately determines the value of several
key physical parameters without any a priori knowledge of the transformer’s internal di-
mensions. The estimation algorithm is also used to detect subtle changes in key parameter
values to demonstrate its potential to assist in FRA interpretation.

This chapter is structured in the following manner. Section 9.2 sets out the procedure
undertaken to validate the modelling approach. Section 9.3 discusses the transformer
measurements for the prescribed FRA tests. Section 9.4 determines the initial parameter
estimate and the corresponding constraints for all of the model parameters used in the
estimation algorithm. Section 9.5 details the application of an algorithm to estimate the
parameters of the model transfer functions. Section 9.6 details the results and parameter
estimates for each of the FRA tests. Section 9.7 demonstrates via a practical example how
the estimation algorithm could be used to investigate winding deformation. Concluding
remarks are given in Section 9.8.

9.2 Model Validation Procedure

The model validation proceeds in the following manner: The first step is to generate FRA
data sets for the HV winding End to End Open Circuit test, the LV Winding End to End
Open Circuit test and the Capacitive Interwinding test. The three tests are conducted on
each of the three permutations, for example, Aa, Bb, Cc for the Capacitive Interwinding
test. This testing schedule results in 9 unique frequency response measurements.

Transfer functions are then created for each of the 9 tests using a seeded parameter
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Figure 9.1: High Voltage Winding End to End Open Circuit FRA for a 1.3MVA
11kV/433V Dyn1 transformer.

set1. A cost function is then applied that sums all of the residuals that exist between the
model transfer function and its respective FRA measurement at each frequency point,
for each of the 9 tests. A constrained nonlinear optimisation algorithm2 then adjusts
the parameter values and repeats the previous step until, ideally, a global cost minimum
is obtained. At this point the optimum fitting of the prescribed models to the FRA
measurements has been achieved.

Key physical parameters used in the model are then compared against those physi-
cally measured from the test transformer. Other key parameters which are not readily
quantifiable are compared to FEA and analytical estimates for additional validation.

9.3 Frequency Response Analysis Tests

Three types of FRA tests were conducted on a Dyn1 1.3MVA 11kV/433V distribution
transformer, these were the High Voltage Winding End to End Open Circuit test, the
Low Voltage Winding End to End Open Circuit test, and the Capacitive Interwinding
test. The resulting frequency responses are shown in Figures 9.1, 9.2 and 9.3. For the
High Voltage End to End FRA shown in Figure 9.1, the frequency response variation due
to inductive disparity is clearly visible when comparing the frequency response for test
BA, with tests AC and CB. This is also apparent between test bn and tests an and cn

1Several of the initial values are based on estimates as defined in Chapter 8
2Numerical computing software is used to implement the constrained nonlinear optimisation algorithm.
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Figure 9.2: Low Voltage Winding End to End Open Circuit FRA for a 1.3MVA
11kV/433V Dyn1 transformer.
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Figure 9.3: Capacitive Interwinding FRA for a 1.3MVA 11kV/433V Dyn1 transformer.
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Description Value

Vector Group Dyn1

Cooling AN/AF

High Voltage Rating 11kV

High Voltage Tap 10.63kV

Low Voltage Rating 433V

HV Current Rating 73A

LV Current Rating 1777A

Z % 9.49

Frequency 50Hz

HV Terminal Resistance 0.915Ω

Tank Length 1.98m

Tank Width 1.01m

Tank Height 2.17m

Table 9.1: Transformer details used to constrain several of the model parameters

in Figure 9.2 and test Cc and tests Aa and Bb of Figure 9.3. Inductive disparity and its
effects on Dyn connected transformers is discussed in Appendix A.

9.4 Initial Parameter Estimates

The next step in the procedure is to obtain the initial parameter estimates and correspond-
ing constraints for each of the parameters estimated in the estimation algorithm. Using
the relationships developed in Chapter 8, the initial parameter estimates and constraints
of several of the model parameters can be determined from the transformer nameplate
and external measurements. The external measurements include the transformer tank
dimensions and the resistance between the high voltage terminals. The details of the
transformer under test are shown in Table 9.1.

The parameters for the transformer model which can be relatively tightly constrained
are listed in Table 9.2. This table includes the initial parameter estimates and the corre-
sponding constraints3. The table also contains a reference where details on the parameter
and/or the constraints can be found.

Without knowledge of the internal dimensions of the transformer it is difficult to place
tight constraints on some of the parameters. As a result, the remaining model parameters,
listed in Table 9.3, are given a relatively loose set of constraints.

3The initial parameter estimate is generally assumed to be the midpoint of the constraints.
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Parameter Symbol Units LB Est. UB Reference

Initial core perm. µi Hm−1 150 800 1500 Table 3.1

Core conductivity σC MSm−1 1.69 1.9 2.1 Sect 3.5.4

Lamination thick. 2b mm 0.23 0.3 0.35 Sect 2.4.1

Stacking factor k - 0.95 0.97 0.99 Sect 3.3.2

Core cross sect. ACS m2 0.031 0.043 0.055 (8.82)

Core yoke length lY mm 844 970 1096 (8.61)

Core limb length lE mm 1081 1302 1523 (8.68)

HV winding turns NX - 826 917 1009 (8.47)

HV cond. area AX mm2 12.8 15.8 18.8 Sect.6.4 (8.7)

LV cond. area Ax mm2 444 666 889 Sect.6.4 (8.9)

HV turns per disc NLX - 5 25 50 Sect 2.5.2

LV layers NLx - 2 6 10 Sect 2.5.2

HV leak. induct. LLX mH 11 39 114 Sect 5.6.5

LV leak. induct. LLx µH 2 33 64 Sect 5.6.5

Leak. coeff. τ - 0 0.5 0.9 Sect 6.3.2

HV-Tank Cap. CgXi pF 3 5 11 Sect 6.5.4

HV-HV Cap. CXY i pF 5 11 21 Sect 6.5.3

Table 9.2: Tightly constrained transformer parameters.
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Parameter Symbol Units LB Est. UB Reference

HV-LV Cap. CXxi pF 10−1 50 10+2 Sect 6.5.1

LV-Core Cap. Cgxi pF 10−1 50 10+2 Sect 6.5.2

HV Winding Cap. CSXi pF 10−1 50 10+2 Sect 6.5.5

LV Winding Cap. CSxi pF 10−1 50 10+2 -

HV-Tank Loss RgXi MΩ 10−2 1 10+2 Sect 6.5.4, 6.5.6

HV-LV Loss RXxi MΩ 10−2 1 10+2 Sect 6.5.1, 6.5.6

LV-Core Loss Rgxi MΩ 10−2 1 10+2 Sect 6.5.2, 6.5.6

HV Winding Loss RSXi MΩ 10−2 1 10+2 Sect 6.5.5, 6.5.6

LV Winding Loss RSxi MΩ 10−2 1 10+2 Sect 6.5.6

Table 9.3: Loosely constrained transformer parameters.

Note that, in this case, the model utilises 8 sections per phase (n=8). This value of
n was based upon a tradeoff between the potential for increased accuracy with a larger
value of n, versus the significant increase in computational time required to find the global
minima.

9.5 Estimation Algorithm

A constrained nonlinear optimisation algorithm is utilised to estimate the transfer func-
tions based on FRA data. This algorithm determines the best fit between the proposed
models and the corresponding FRA data by finding the model parameters that minimise
a cost function. The cost, J , is based on the 2-norm between each of the FRA data sets
and their corresponding FRA model. The model is applied to each of the three phase
permutations for the three types of FRA test, hence J represents the cumulative total of
each 2-norm associated with these tests,

J = WXX

∥∥∥∥∥log10

( ĜAC(jw)
HAC(jw)

)∥∥∥∥∥
2

+

∥∥∥∥∥log10

( ĜBA(jw)
HBA(jw)
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2

+

∥∥∥∥∥log10

( ĜCB(jw)
HCB(jw)
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2


WXx

∥∥∥∥∥log10

( ĜAa(jw)
HAa(jw)
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2

+

∥∥∥∥∥log10

( ĜBb(jw)
HBb(jw)

)∥∥∥∥∥
2

+

∥∥∥∥∥log10

( ĜCc(jw)
HCc(jw)

)∥∥∥∥∥
2


Wxx

∥∥∥∥∥log10

( Ĝan(jw)
Han(jw)

)∥∥∥∥∥
2

+

∥∥∥∥∥log10

( Ĝbn(jw)
Hbn(jw)

)∥∥∥∥∥
2

+

∥∥∥∥∥log10

( Ĝcn(jw)
Hcn(jw)

)∥∥∥∥∥
2
 .(9.1)



9.6. APPLYING THE MODEL TO FRA DATA 195

Symbol FRA Test Weight

WXX HV End to End 1

WXx Capacitive Interwinding 1
5

Wxx LV End to End 1
10

Table 9.4: Cost function weights for the case study.

In (9.1) H..(jw) represents the FRA data and Ĝ..(jw) the estimated transfer function for
the corresponding FRA model defined in (7.68). Weights can also be given to each type
of FRA test. In (9.1) WXX is the weighting given to the HV End to End FRA test, WXx

is the weighting given to the Capacitive Interwinding FRA test, andWxx is the weighting
given to the LV End to End FRA test. Due to the dominant influence of the high voltage
windings, weights were applied in such a way as to emphasise the HV winding within
the cost function. Table 9.4 lists the empirically determined weights given to each of the
FRA tests for this example. The resulting estimation algorithm parameter solution set θ̂
is given by,

θ̂ = arg min {J} , (9.2)

such that the constraints in Tables 9.2 and 9.3 are satisfied.

9.6 Applying the Model to FRA Data

Using the constrained nonlinear optimisation algorithm described in Section 9.5, each of
the 9 transfer functions is fitted to their respective frequency responses. Prior to the
acceptance of the estimated parameter solution set θ̂, additional tests were conducted in
order to provide a high degree of confidence that the global minima had been determined.
The first test was to seed several runs of the original constrained nonlinear optimisation
algorithm with uniformly distributed random initial values. The second test loaded θ̂,
as well as randomly generated parameter solutions, as initial values into a Simulated
Annealing Optimisation Algorithm which employed the same cost function. Every test
case supported θ̂ as the global minima.

With θ̂ as the accepted global minima, an analysis of the results for each of the FRA
tests is given in the following sections. In addition, since the model parameters are based
on physical parameters, an analysis is also conducted on the relative accuracy of the
estimated parameters.

9.6.1 High Voltage Winding End to End Open Circuit FRA Test

Bode diagrams for the estimated models of the three High Voltage Winding End to End
Open Circuit FRA tests are shown in Figures 9.4 to 9.6. The results are very good both
in magnitude and phase for frequencies ≤ 1MHz. An important result is the estimated
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Figure 9.4: Estimated transformer model and the FRA data for the HV Winding End
to End Open Circuit test measured between the high voltage A and C terminals on a
1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.5: Estimated transformer model and the FRA data for the HV Winding End
to End Open Circuit test measured between the high voltage B and A terminals on a
1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.6: Estimated transformer model and the FRA data for the HV Winding End
to End Open Circuit test measured between the high voltage C and B terminals on a
1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.7: Estimated transformer model and the FRA data for the LV Winding End to
End Open Circuit test measured between the low voltage terminal and neutral of phase
A on a 1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.8: Estimated transformer model and the FRA data for the LV Winding End to
End Open Circuit test measured between the low voltage terminal and neutral of phase
B on a 1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.9: Estimated transformer model and the FRA data for the LV Winding End to
End Open Circuit test measured between the low voltage terminal and neutral of phase
C on a 1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.10: Estimated transformer model and the FRA data for the Capacitive In-
terwinding test measured between the high and low voltage terminals of phase A on a
1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.11: Estimated transformer model and the FRA data for the Capacitive In-
terwinding test measured between the high and low voltage terminals of phase B on a
1.3MVA 11kV/433V Dyn1 transformer.
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Figure 9.12: Estimated transformer model and the FRA data for the Capacitive In-
terwinding test measured between the high and low voltage terminals of phase C on a
1.3MVA 11kV/433V Dyn1 transformer.

model response to the inductive disparity. Its effect, which can be observed by comparing
the significant frequency variation between tests BA and tests AC and CB, is clearly
accommodated by the model.

9.6.2 Low Voltage Winding End to End Open Circuit FRA Test

Bode diagrams for the three Low Voltage Winding End to End Open Circuit FRA tests
are shown in Figures 9.7 to 9.9. The self resonance for tests an and cn is at approximately
3.2kHz whereas for test bn the self resonance is at approximately 2.6kHz. This is a result
of the inductive variation and is emulated by the model. Good fitting results are obtained
for frequencies ≤ 1MHz.

9.6.3 Capacitive Interwinding FRA Test

Bode diagrams for each of the Capacitive Interwinding FRA tests are shown in Figures
9.10 to 9.12. The first resonance for tests Aa and Bb is at approximately 1.5kHz whereas
for test Cc the first resonance is at 1.8kHz. This variation is due to inductive disparity
and is successfully captured by the model. The overall correlation between the model and
the three tests for frequencies ≤ 1MHz is very good.
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Parameter Symbol Units Estimate Actual Error

Core cross sectional area ACS m2 0.038 0.036 4%

Core yoke length lY m 1.1 1.1 0%

Core limb length lE m 1.1 1.2 10%

HV winding turns NX - 912 852 7%

Table 9.5: Comparison between estimated and actual values for key measurable parame-
ters.

Sectional Capacitance Symbol Units Model Estimate FEA/Theoretical Est.

HV-LV CXxi pF 75 52

LV-Core (Ground) Cgxi pF 63 44

HV-Tank (Phase A/C) CgXi pF 11 6

HV-Tank (Phase B) CgXi pF 10 5

HV-HV CXY i pF 9 6

HV Winding CSXi pF 90 30

Table 9.6: Comparison between the modelled and FEA/theoretical estimates for the
sectional capacitance (n = 8).

9.6.4 Confirmation of Parameters

To demonstrate the physical nature of the proposed models, a number of parameters
which can be readily measured are compared with their estimated counterparts in Table
9.5. The worst case error was 10%. When considered in the context that the parameters
have been determined without use of any of the internal dimensions of the transformer,
the results are particularly good and demonstrate the physically representative nature of
the proposed transformer model.

For the parameters related to capacitance, an accurate physical measurement is not a
straightforward option. The use of an LCR bridge to determine capacitance will require
the same modelling considerations and assumptions as used in the FRA model. To pro-
vide an accurate estimate for each of the respective capacitances, two dimensional finite
element analysis (FEA) was used based on the work from Section 6.54. The FEA models
are given in Appendix D.

The comparative results for the sectional capacitance based on an 8 section model, i.e.
n = 8, are given in Table 9.6. When considered in the context that the parameters have
been determined directly from FRA, satisfactory estimates have been obtained for the
capacitance parameters (though a significant disparity is observed in CSXi). It is proposed

4The HV winding series capacitance values can not be readily determined using two dimensional FEA.
This parameter estimate was determined using (6.49) as derived in Chapter 6.
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Parameter Symbol Units Estimate

Initial core perm. µi Hm−1 798

Core conductivity σC MSm−1 2.1

Lamination thick. 2b mm 0.35

Stacking factor k - 0.95

HV cond. area AX mm2 18.8

LV cond. area Ax mm2 444

HV turns per disc NLX - 25

LV layers NLx - 6

HV leak. induct. LLX mH 101

LV leak. induct. LLx µH 2.1

HV Leak. coeff. τHV - 0.5

LV Leak. coeff. τLV - 10−4

LV Winding Cap. CSxi pF 0.27

HV-Tank Loss RgXi MΩ 2

HV-LV Loss RXxi MΩ 20

LV-Core Loss Rgxi MΩ 0.7

HV Winding Loss RSXi kΩ 63

LV Winding Loss RSxi kΩ 10

Table 9.7: Parameter estimates.
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that the estimation errors associated with these capacitance values are due to small errors
in the modelling of complex permeability. Due to the highly non-linear nature of complex
permeability (refer to Figure 3.13), even subtle variations could have a significant influence
on the magnetising inductance with frequency. Any errors in inductance will inversely
affect the estimated value of a capacitor during the model fitting. It is proposed that
the accuracy of the capacitance estimates could be improved by incorporating additional
features into the modelling of the transformer’s core, such as the influence of core joints.

The overall parameter estimate results of Tables 9.5 and 9.6 are satisfactory and
provide support for the physically representative nature of the transformer model. For
the sake of completeness, the remaining parameter estimates are shown in Table 9.7.

9.7 FRA Interpretation Example

It has been proposed that the modelling approach provides a suitable platform to facilitate
advances in the interpretation of FRA. A suitable test of the veracity of this proposal is to
demonstrate that changes in the frequency response due to a deformation in a transformer
winding could be simulated via appropriate parameter value changes in the transformer
model, as demonstrated in [61, 65]. A more robust evaluation of the modelling approach
would be to test if the model parameters would correctly change to reflect an altered
winding geometry induced by deformation. The purpose of this section is to demonstrate
the latter test via a practical example on the 1.3MVA 11kV/433V Dyn1 distribution
transformer.

9.7.1 Short Circuit Forces and their Potential Consequences

A short circuit can place tremendous forces upon transformer windings and mechanical
structure [69]. Analysis of the leakage flux fields during a short circuit shows that the
forces can be decomposed into radial and axial components [25]. The radial leakage flux
is predominantly at the winding ends and produces an axial force on the windings. This
can result in an axial displacement of the HV winding with respect to the LV winding [61].
The leakage flux which passes across the core window in the axial direction (as discussed
in Section 5.4) will produce an outward radial force on the HV winding and an inward
radial force on the LV winding [25]. The outward radial force is tensile in nature and
can stretch the conductor or break a poor joint, which can lead to failure. However, the
relatively high tensile strength of the conductor material means that failures in the outer
winding due to tensile stress are unlikely [71]. The inward radial force places compressive
stress on the LV winding. This compression can lead to winding deformation known as
buckling and is a common mode of failure [61]. Buckling of the LV winding is the focus
of this FRA interpretation example.
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Figure 9.13: Buckling modes associated with radial stress on a transformer’s LV winding;
(a) forced buckling, (b) free buckling.

9.7.2 Buckling Modes for the LV Winding

When the support structure of the LV winding has a greater stiffness than the LV winding
conductors themselves, under compressive stress it is possible for the winding conductors
to bend in between each of the spacers towards the core. This is known as forced buckling
[105] and is shown in Figure 9.13(a). Forced buckling in an LV winding will lead to an
increase in the average distance between the HV and LV windings. This will result in a
reduction in the HV to LV winding capacitance. Conversely, since the average distance
between the LV winding and the core decreases, there is a corresponding increase in the
LV to core capacitance [61].

Another buckling mode known as free buckling can occur when the conductor has
a higher stiffness than the winding support structure. Under these circumstances the
winding can buckle both inwards and outwards around the circumference [105]. This
buckling mode is shown in Figure 9.13(b).

9.7.3 The Emulation of an Outward Radial Buckle in the LV Winding

A testing limitation placed on this research is for all tests conducted on transformers to
be non-destructive. As a result, in order to obtain the FRA data associated with differ-
ent levels of winding deformation, we propose to utilise a method which could emulate
“buckling” in the LV winding, but would be temporary in nature so that the transformer
can be restored to its original condition at the end of the testing program. Emulating
the buckling of the LV winding requires the ability to reduce the HV to LV winding ca-
pacitance and increase the LV to core capacitance. Both of these capacitances can be
estimated from the coaxial cylinder capacitance relationship of (6.23). With reference to
(6.23), the only parameter that can be altered without significant mechanical change is
ε, the electrical permittivity of the dielectric medium. A change in ε can be achieved by



9.7. FRA INTERPRETATION EXAMPLE 205
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Figure 9.14: The emulation of an outward radial buckle in the LV winding using a neo-
prene rubber insert between the HV and LV windings.

changing the dielectric material between the cylinders.
Since the transformer available for the test is air cooled, the most practical method

available to emulate “buckling” in the LV winding was to insert neoprene rubber between
the HV and LV windings. Since neoprene rubber has an electrical permittivity of 6.7
(compared to 1 for air)[4], the inserts will have the effect of increasing the HV to LV
capacitance, and will therefore approximately emulate an outward radial buckle in the
LV winding. Though a buckle in the LV winding would typically be inward, the objective
of this set of tests is to determine if the model parameters correctly change to reflect an
altered winding “geometry”, and hence validate the physically representative nature of the
model.

9.7.4 Transformer “Buckle” Tests

The 1.3MVA 11kV/433V Dyn1 distribution transformer was used for the “buckle” emu-
lation modifications. The modifications involved the insertion of 6mm neoprene rubber
strips in between the Phase A HV and LV windings. Each of the strips ran the full axial
length of the winding. Four “buckle” tests were conducted in total. The first test was
an unmodified baseline test which is referred to as 0% “buckle”. For the second test the
transformer was modified such that the neoprene inserts covered 8% of the LV winding’s
outer circumference. This coverage was increased to 16% for the third test and to 24% for
the fourth. HV Winding End to End Open Circuit, LV Winding End to End Open Circuit
and Capacitive Interwinding FRA tests were then conducted on each of the “buckle” test
cases. A zoomed in view of the resulting HV Winding End to End Open Circuit and
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Figure 9.15: Zoomed in view of AC and BA High Voltage End to End Open Circuit FRA
tests. The tests are based on winding “buckling” of 0%, 8%, 16% and 24%.

Capacitive Interwinding FRA tests is given in Figures 9.15 and 9.16 respectively. In both
figures, frequency response changes coinciding with the increasing degree of “buckle” in
the transformer’s A phase windings are observed.

9.7.5 Parameter Estimation for Radial “Buckling”

As discussed in Section 9.7.2, radial buckling results in changes to certain parameters.
Given a baseline FRA for comparison, knowledge of these parameters and the direction of
their expected change can be used to our advantage. The first step is to run the estima-
tion algorithm on the baseline FRA to determine the baseline parameter values. Other
than the parameters specific to the deformation type being investigated, the remaining
parameter values can all be fixed after this first run. The parameters of interest are then
tightly constrained around their baseline estimates and the estimation algorithm is run
with the FRA data that is in question. This approach significantly limits the degrees of
freedom associated with the model, making the estimation algorithm more sensitive to
the subtle changes that are being investigated.

The majority of power transformers are oil filled where the oil plays the dual role of
insulation and cooling medium [53]. However, in order to facilitate internal tank access
for measurement and modification, we have used an air cooled test transformer. The
disadvantage of using an air cooled transformer for our tests is its sensitivity to atmo-
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Figure 9.16: Zoomed in view of Aa and Bb Capacitive Interwinding FRA tests. The tests
are based on winding “buckling” of 0%, 8%, 16% and 24%.

spheric variations such as temperature and humidity, which can vary widely throughout
the course of a day. The variation in humidity during the week of transformer testing is
shown in Figure 9.17. One area that is particularly sensitive to changes in both humidity
and temperature is the losses associated with the permittivity of the insulation material
[16]. Variation in the complex permittivity is reflected in the transformer’s frequency
response. As a result, the estimated parameter values may be influenced by changes in
atmospheric conditions. In order to detect the subtle changes expected in the model
parameters as a result of the “buckle” tests, we need to adopt an approach which will
minimise the influence of both temperature and humidity.

This independence can be achieved in the following manner. Rather than look at
the absolute value of a parameter, we can use the relative difference between similar
parameters on different phases, e.g. CAai - CBbi. We use this difference as an independent
parameter for each of the “buckle” test cases. This differential approach removes the
common mode effects due to changes in the atmospheric conditions since only the absolute
value of the parameters is affected.

Table 9.8 lists the interwinding capacitance estimates of each phase for each of the test
cases. The changes observed in the capacitance are not always consistent due to the hu-
midity and temperature induced variations in the complex permittivity of the insulation,
the modelling accuracy limitations, and the subtle nature of the parameter changes. It is
for this reason that the proposed relative parameter difference approach was utilised, and
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Figure 9.17: Humidity variation observed during a week of transformer testing [Sourced
from the Australian Bureau of Meteorology].

% Circum. “buckling” CAai CBbi CCci CAai − CBbi CAai − CCci 4AV

0% (Baseline) 77.9 74.1 73.1 +3.8 +4.8 0

8% 79.8 74.7 73.6 +5.1 +6.2 +1.35

16% 80.2 72.5 71.7 +7.7 +8.5 +3.80

24% 80.9 72.0 69.9 +8.9 +11.0 +5.65

Table 9.8: “Buckling” test interwinding capacitance estimates for each phase. All values
are in pF.
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% Circum. “buckling” % Change (Model) % Change (FEA)

0% (Baseline) - -

8% +2% +3%

16% +5% +6%

24% +7% +9%

Table 9.9: Model and FEA estimates for the change in the Phase A interwinding capac-
itance based on the emulation of outward radial “buckling” for 0% (Baseline), 8%, 16%
and 24% of the winding circumference.

Table 9.8 includes the relative difference between the estimated interwinding capacitance
of phase A and that of phases B and C. The last column of the table lists 4AV which
represents the average change in the capacitance difference relative to the baseline values.
Therefore 4AV is an independent value for the change in the interwinding capacitance
of phase A due to “buckling”. As per Section 9.7.3, for the “buckling” conditions being
considered here we would expect the relative difference between the phase A interwinding
capacitance and that of phases B and C to increase with increased “buckle”. The value of
4AV for each test case shows this to hold true.

In order to confirm that the degree of change in the interwinding capacitance is correct,
the change relative to the baseline value is compared to that predicted by FEA in Table
9.9 (the FEA models are given in Appendix D). The estimated percentage change in the
value of the capacitance relative to the amount of buckling is very close to that predicted
by FEA.

This example provides support for the physically representative nature of the mod-
elling approach developed in this thesis. It also provides an insight into its potential as a
tool for assisting in FRA interpretation.

9.8 Conclusion

The purpose of this chapter was to demonstrate, by application, the physically represen-
tative nature of the transformer model proposed in this thesis and demonstrate how it can
be used to facilitate improved FRA interpretation. To achieve this goal, FRA tests were
performed on a Dyn1 1.3MVA 11kV/433V distribution transformer. The FRA testing
procedure resulted in nine unique frequency responses (three connection permutations for
each of the three FRA test types). An estimation algorithm was then applied. This algo-
rithm simultaneously estimated each of the model transfer functions for the corresponding
FRA data using a common parameter set with defined constraints.

The estimation results were very good for each of the FRA tests conducted. To confirm
the physically representative nature of the FRA models, several key parameters whose
value could be accurately determined through internal inspection were compared against
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their estimated counterparts. These parameters were all within a reasonable tolerance
of their actual values, providing support for the physically representative nature of the
model.

To demonstrate how the modelling approach could be used to facilitate improved
FRA interpretation, a transformer was modified in order to emulate winding deformation.
The parameter estimation algorithm was able to use FRA data to correctly determine
the subtle variation in capacitance which was indicative of the induced change in the
winding’s structural “geometry”.
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Chapter 10

Conclusion and Further Research

10.1 Conclusion

The windings and associated mechanical structure of a transformer can undergo high
levels of mechanical stress during a fault condition. Such mechanical stress can induce
winding deformation that could lead to transformer failure. Frequency response analysis
is a diagnostic tool that can be used to look for subtle changes in a transformer’s frequency
response [40]. Since deformation of the windings will change its frequency response, FRA
is an ideal tool that can be used to monitor the mechanical integrity of the windings.

Current practice is for trained personnel to look for variation in a transformer’s fre-
quency response relative to historical or comparable transformer data. Cigre’s A2.26
working group published a report in 2008 [6] that highlighted the need for research into
models based on geometric parameters to improve FRA interpretation. The intention
of the work presented in this thesis is to follow the Cigre recommendation and advance
current research into geometric parameter based transformer modelling for FRA inter-
pretation.

The preliminary step was to review the most common designs used in modern power
transformer construction. From this it was proposed that the research focus on double
wound, three phase, three limb core form power transformers. This is the nominal ar-
rangement used in the construction of small to medium sized power transformers, and
provides a wide application base. However, the approach described in this thesis is flexible
enough to be modified to suit most modern power transformer designs.

A topic of contention in the area of transformer modelling is the frequency above
which the core’s complex permeability can be neglected. Current research suggests 1MHz.
Based on the presented results in this thesis, the complex permeability is still significant
at 1MHz and does not approach unity until frequencies above 15MHz, even for the largest
lamination thicknesses. Complex permeability must therefore be taken into account for
the entire FRA spectrum. In addition, it was demonstrated that during an FRA test the
relative permeability approaches the initial permeability. As a result, the FRA data can
be considered to have a level of independence with respect to commercially available FRA
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test equipment.
Having obtained a definition for the complex permeability of the core, a detailed anal-

ysis of the transformer’s self, mutual and leakage inductance relationships was conducted.
Inductance equations were derived based on measurable geometric parameters including
the core yoke and limb lengths, core cross sectional area, and number of winding turns.

A generic phase lumped parameter model was then developed for a power transformer.
The model was based on composite inductive, capacitive and resistive elements. Each
inductive element incorporated the complex frequency dependent self, mutual and leakage
inductance relationships that exist within and between each winding section. The model
included a capacitive element for capacitance between windings, windings and the core,
windings and the tank, the high voltage windings of different phases and the capacitance
across a winding section. The capacitive elements also included an associated dielectric
loss term. The resistive element incorporated the DC, skin and proximity effects of each
winding section. The generic nature of this model accommodates the substitution of
model parameters that are phase dependent.

To facilitate interpretation of FRA data the transformer model needs to incorporate
the FRA test type, the terminal permutations, as well as the vector group of the trans-
former under consideration. To achieve this in a flexible manner, a layered modelling
approach was adopted. The first layer was three instances of the generic phase model.
They were nominally allocated generic phases X, Y and Z. The generic phase referencing
facilitated the modelling of the different terminal permutations associated with an FRA
test sequence. The second layer was the transformer vector group. This layer specifies the
interconnection of the generic phase models. The third and final layer of this modelling
approach was the FRA test type. This layer adds to the model the FRA voltage source
and output impedance, both of which are FRA test dependent with respect to their lo-
cation within the model. A complete model was then constructed for the High Voltage
End to End, Low Voltage End to End, and Capacitive Interwinding FRA tests. Since
this work has primarily focused on distribution level transformers, each of these models
was based on a Dyn connection.

Other researchers have discussed the issues of producing a model that is not physi-
cally feasible. To overcome this issue, relationships have been developed which provide
an initial parameter estimate, and corresponding constraints, for a number of key param-
eters. The constraints around these parameters provide a high degree of confidence in
the physically representative nature of the final result. Since the detailed internal design
specifications of a transformer are regarded as the intellectual property of the manufac-
turer, it is rarely available to utilities and testing authorities. As a result, the parameter
constraints developed use readily available data such as external transformer dimensions,
routine test data, and nameplate details. To demonstrate the relative accuracy of this
approach, parameter estimates based on these relationships were successfully applied to
a range of small to medium sized transformers.
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To demonstrate the veracity of the modelling approach, a case study on a distribution
transformer was performed. FRA data was acquired for each of the three connection per-
mutations of three different FRA test types. This resulted in nine unique FRA data sets.
Utilising the initial parameter estimates and constraints, a constrained nonlinear optimi-
sation algorithm was simultaneously applied to all nine data sets in order to determine
a cost minimum. The cost related the cumulative residual between the corresponding
model and data frequency points. The resulting parameter solution set was then used to
plot the model frequency responses against their respective FRA test. The correlation
between the model and data sets was excellent. To confirm that the model was physically
representative, several of the key parameters were compared against their measured coun-
terparts. Taking into account the fact that these parameters were determined without
knowledge of the internal dimensions of the transformer, the results were very good.

To demonstrate how the model could be used to assist in FRA interpretation, the
distribution transformer was modified in order to emulate an outward radial “buckle” in
the LV winding. This was achieved by inserting neoprene strips between the HV and LV
windings for a percentage of the winding circumference. The change in dielectric material
for a proportion of the winding altered the effective capacitance between the windings.
This change in capacitance was reflected in the transformer FRA. Through application
of the parameter estimation algorithm, subtle changes in the HV to LV capacitance was
detected. The percentage change in capacitance was very close to FEA model prediction.
This result highlights the physically representative nature of the model and also shows
the potential of this approach as a tool to support FRA interpretation.
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10.2 Further Research

There are a number of areas that are targeted for future research. These areas include
improvements to the current models, as well as areas that either directly or indirectly
could benefit through the application of the work presented in this thesis.

10.2.1 Model Improvements

The model fitting for the High Voltage Winding End to End and Capacitive Interwinding
FRA tests were very good. However, the results for the Low Voltage Winding End to End
test could be further improved. In order to improve the model for this test, additional
research is required into the model elements and structure reflecting the low voltage side
of the transformer winding.

10.2.2 Expand Model Portfolio

The research in this thesis focused attention on Dyn connected transformers undergoing
High Voltage Winding End to End Open Circuit tests, Low Voltage Winding End to
End Open Circuit tests and Capacitive Interwinding tests. In order to be able to apply
the proposed modelling approach more broadly, a valuable area of future work would be
to expand the modelling portfolio to include a complete set of models for all possible
permutations of vector group and FRA test type.

10.2.3 Fault detection using FRA Interpretation

The simultaneous fitting of multiple FRA test types can lead to more accurate parame-
ter estimates. With more accurate parameter estimates, a clearer understanding of the
physical phenomenon driving the frequency change is obtained. Using the model portfolio
discussed in the previous section, the author would like to apply this approach to vari-
ous transformer connections whilst simulating the most common faults. It is hoped that
this approach would lead to a broader understanding of the fault to frequency response
relationship, and hence improve FRA interpretation.

10.2.4 Partial Discharge Location

In the conference proceedings [79, 80] I present work which uses a narrowband single
phase transformer model for partial discharge (PD) location. As an area of future work,
I propose using a similar approach with the more comprehensive models presented in
this thesis to determine PD location within a three phase transformer. In addition,
unlike the approach presented in these articles, the wide-band model parameters would
be preconfigured using FRA test data to improve modelling accuracy.
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Appendix A

Inductive Disparity

A.1 Introduction

We investigate the low frequency response of three different FRA tests on two transform-
ers with different vector group numbers in this appendix. The research examines how
inductive disparity coupled with different connection and measurement topologies can
produce a significantly different frequency response. In order to explain the frequency
response differences, simplified versions of the three phase generic model presented in
Chapter 7 are developed for the HV Winding End to End Open Circuit, LV Winding
End to End Open Circuit and Capacitive Interwinding FRA tests. To assist with the
model reduction, it will be assumed that a large turns ratio exists between the high and
low voltage windings. Other fundamental assumptions will be justified in the following
sections.

This appendix is structured in the following manner. Section A.2 highlights the im-
portance of understanding the influence inductive disparity has on a frequency response.
Section A.3 justifies the inductive disparity hypothesis. Section A.4 looks at the variation
in inductance between the HV and LV windings for the two transformers under consider-
ation. Section A.5 looks at the variation between the various self and mutual inductance
relationships for the two test transformers. Section A.6 then proposes simple models to
explain the low frequency responses for each of the three FRA test types. Concluding
remarks are then given in Section A.7.

A.2 Background

The disparity in inductance between the phases of a three phase transformer is a well
documented property [41, 71, 88, 115]. The effective magnetic path length observed by
a winding is inversely proportional to the winding’s inductance [89]. For a three phase
core type transformer, this results in the inductance of phase B being moderately larger
than that of phase A and phase C, which are approximately equal. Inductive disparity
can create significant variation between the observed frequency responses of an FRA test
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Figure A.1: Magnetic equivalent circuit of a three phase two winding core type transformer

in the low frequency regions.
To detect change, testing personnel compare the FRA waveforms against historical

data, sister transformer data or between phases on the same transformer, the latter test
being the most convenient. It is the practice of interphase comparison that makes un-
derstanding the influence of inductive disparity and its relationship with a transformer’s
vector group so critical.

A.3 Inductive Disparity

FRA testing currents will generate an alternating magnetic field which will subsequently
induce eddy currents in the transformer core. As discussed in Chapter 3, at high frequen-
cies this effect will attenuate the complex permeability of the core. As such, the inductive
disparity will dominate at lower frequencies (<10kHz). With reference to Figure A.1, F
represents the respective magnetomotive force (mmf) for each of the windings, RE is the
core limb reluctance, RY is the core yoke reluctance and RL is the winding leakage flux
reluctance. The linear dimensions of the core are lE for the mean limb length and lY for
the mean yoke length.

The reluctance of a magnetic core section of mean length l and cross sectional area
ACS , with an effective permeability µ is defined as [89]:-

R =
l

µACS
, (A.1)
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where µ = µ0µR ,

µ0 = 4π x 10−7H/m ,

µR = Relative permeability of the core .

It is assumed that the core cross sectional area and permeability are uniform across all
core sections. In addition, flux leakage is small relative to core flux at low frequency
and will therefore be neglected. From (4.15), the reluctance observed by windings on the
outside limbs is,

RMA = RMC =
[

1
µACS

] [
(lE + lY ) (3lE + lY )

2lE + lY

]
, (A.2)

and from (4.24), the reluctance observed by windings on the centre limb is,

RMB =
[

1
µACS

] [
3lE + lY

2

]
. (A.3)

In practical transformer design, lE and lY are similar hence,

RMB < RMA = RMC . (A.4)

Inductance is given by,

L =
N2

R
, (A.5)

where L is winding inductance and N is the number of winding turns. Since N is the
same for each equivalent winding, from (A.4) and (A.5), the inductance of phase B is
greater than that of phases A and C, i.e.

LB > LA = LC . (A.6)

As is observed in Section A.6, the inductive variation, or disparity, of (A.6) has a signifi-
cant influence upon the low frequency response of a transformer.

A.4 HV to LV Inductance Ratio

With reference to Figure A.2 (and as discussed in Section 2.9.1), it is noted that for a Dyn
connected transformer there is a direct coupling of the HV winding line voltage vXY to
that of the LV winding phase voltage vxn. This results in a connection based

√
3 voltage

gain [121],
NX

Nx
=
√

3vXY
vxy

, (A.7)
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where vXY and vxy represent line voltages for the HV and LV windings respectively,
and NX and Nx the corresponding number of turns per winding. Both the HV and LV
windings share the same magnetic circuit, hence the circuit reluctance parameter, R, is
the same. Therefore, from (A.5), the winding inductance ratio between the HV and LV
windings of a Dyn connected transformer can be found in terms of the turns ratio,

LX
Lx

=
N2
X

N2
x

. (A.8)

Substituting (A.7) into (A.8) and noting that both the distribution transformers under
test are 11kV-433V,

LX
Lx

= 3
(vXY
vxy

)2

= 3
(11000

430

)2

LX = 1963Lx

∴ LX >> Lx . (A.9)

The relationship (A.9) is necessary for model reduction purposes in the latter sections of
this appendix due to the fact that at low frequencies, the low voltage winding inductance
can be considered negligible relative to that of the high voltage winding.
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A.5 Self and Mutual Inductance Relationships

The mutual inductance between the low and high voltage windings of a particular phase,
noting that the coefficient of coupling will approach unity at low frequencies, can be
defined as,

MxX ≈
√
LxLX . (A.10)

From (A.9) we have

MxX ≈
√

1963LxLx ≈ 44Lx

MxX >> Lx . (A.11)

Therefore, the mutual inductance between the low and high voltage windings on a given
phase is an order of magnitude greater than the self inductance of the low voltage winding.

The interphase mutual inductance can be determined from the mutual inductance
definition [89],

Mjk =
Λjk
ij

, (A.12)

where Mjk is the mutual inductance between windings j and k, Λjk is the flux linkage
between windings j and k, and ij is the current in winding j. With reference to the three
limb core of Figure A.1, at low frequencies where µR >> 1, it is observed that the flux
generated by a winding on a given phase has a flux linkage on the winding of another
phase relative to the magnetic path reluctance ratio. For example, the flux generated by
a winding on phase A is split between the magnetic paths of phases B and C based on
the ratio of their path reluctance. We also note that whilst the reluctance of phase B is
less than that of phases A and C, as shown in (A.4), the difference is only modest and as
such, the following generic inequality can be deduced from (A.12),

MxX > MxY . (A.13)

This shows that the mutual inductance between the low and high voltage windings on
the same phase is always greater than the mutual inductance between the low and high
voltage windings of different phases. Similarly the self inductance of a winding on a
particular phase can be assumed to be larger than its mutual inductance with a similar
winding of different phase,

Lx > Mxy . (A.14)

A.6 FRA Test Results

On a three phase transformer, FRA tests are conducted in sets of three such that all
phase combinations are included in the testing sequence. Correlation between the generic



220 APPENDIX A. INDUCTIVE DISPARITY

A

a

B C

b c

(a)

n

A

a

B C

b c

(b)

n

Figure A.3: 3 phase transformer Dyn vector group topologies: (a) Dyn1, (b) Dyn11

FRA Input

LX

v
OUT

LYLZ

v
IN 50�

50�

FRA Output

v
S

MXZ
MXY

MYZ

X Y

Z

50�

Figure A.4: Simplified generic phase model of a High Voltage Winding End to End Open
Circuit FRA test of a Dyn connected transformer
X = FRA Input / Transformer HV terminal
Y = FRA Output / Transformer HV terminal
LX , LY , LZ = Self inductance of delta connected HV windings
MXY , MXZ , MY Z = Mutual inductance between HV windings

phase (X, Y or Z) of the model and the true phase for a particular test can be made via
reference to the appropriate tables (Tables A.1, A.2 and A.3). In addition, to highlight
the influence that the vector group will have on results, testing was conducted on two
transformers with different vector group numbers, Dyn1 and Dyn11 (Refer Figure A.3).

A.6.1 High Voltage Winding End to End Open Circuit FRA Test for
Dyn1 and Dyn11 Vector Group Transformers

The High Voltage Winding End to End Open Circuit FRA test records the frequency
response between two of the three high voltage transformer terminals. The third high
voltage terminal and the low voltage terminals are left open circuit. This test is repeated
for all three high voltage terminal combinations. From a modelling perspective, with
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Table A.1: HV winding End to End Open Circuit FRA test: Generic phase reference for
Figure A.4

Vector Group FRA Test (vINvOUT ) X/x Y/y Z/z

Dyn1

AC A/a C/c B/b

BA B/b A/a C/c

CB C/c B/b A/a

Dyn11

AB A/a B/b C/c

BC B/b C/c A/a

CA C/c A/a B/b

reference to (A.9) for the two transformers under consideration, the influence of the
disconnected low voltage winding can be considered negligible. At low frequencies a
model of a Dyn connected transformer can be reduced to a series combination of two
windings in parallel with the third, as shown in Figure A.4. To consider all three phase
combinations for this test, it is convenient to present the model in a generic phase form.

Analysing the simplified model and noting (A.6) and (A.14), it can be shown that
the equivalent inductance between the input and output terminals is larger when the
generic winding X represents phase B. The test terminal combination for X to represent
the phase B high voltage winding, is dependent upon the vector group of the transformer
and is highlighted in Table A.1. The influence of the larger equivalent inductance at low
frequencies for tests between terminals B and A for a Dyn1 vector group, or terminals B
and C for a Dyn11 vector group, is observed in the frequency responses of Figures A.5
and A.6. One observable effect of inductive disparity, for test BA in Figure A.5 or test
BC in Figure A.6, is a smaller magnitude in the frequency range between 100Hz and
2kHz. This region where the roll off is 20dB/dec, is referred to as the inductive roll off.
Another variation in the frequency response can be observed at the self resonant frequency
which marks the transition between the inductive and capacitive regions of the frequency
response [60]. The larger effective inductance results in a lower self resonant frequency
which is clearly visible for test BA in Figure A.5 and test BC in Figure A.6.

A.6.2 Capacitive Interwinding FRA Tests for Dyn1 and Dyn11 Vector
Group Transformers

This test measures the frequency response between a high and low voltage terminal on a
particular phase. In this test the remaining high and low voltage terminals are left open
circuit. Again the test is repeated for all three high to low voltage terminal combinations.
A low frequency generic phase model for this test is shown in Figure A.7. From (A.9),
the low voltage winding inductance is negligible at low frequency with respect to the
high voltage winding and approximates a short circuit. Neglecting for the moment the
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Figure A.5: HV Winding End to End Open Circuit FRA test using a HP89410A Vector
Analyser on a 1.3MVA 11kV/433V Dyn1 transformer between high voltage terminals A
to C, B to A and C to B.

inductive disparity, if the distributed high voltage winding inductance is assumed equal
for all phases, then the total voltage across the phase X winding is equal to that of the
phase Z winding,

vLX(k) ≈ vLZ(n−k+1) where k = 1 to n . (A.15)

Therefore the current that flows into either end of winding Y is,

iY 1 ≈ iY n . (A.16)

It then follows that the voltage across winding Y will tend to zero, i.e.

vLY −→ 0 . (A.17)

From (A.17), the high voltage windings can be approximated to be a parallel combination
of LX and LZ . When either of these two generic windings represent the B phase high
voltage winding, the effective inductance is larger then the parallel combination of the
outer limb windings (phases A and C). The larger effective inductance combined with the
interwinding capacitance will result in a lower resonant frequency. This effect is observed
in Figure A.8 for the high to low voltage terminal tests Aa and Bb of the Dyn1 vector
group and in Figure A.9 for the high to low voltage terminal tests Bb and Cc on the
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Figure A.6: HV Winding End to End Open Circuit FRA test using a HP89410A Vector
Analyser on a 200kVA 11kV/433V Dyn11 transformer between high voltage terminals A
to B, B to C and C to A.

Table A.2: Capacitive Interwinding FRA test: Generic phase reference for Figure A.7

Vector Group FRA Test (vINvOUT ) X/x Y/y Z/z

Dyn1

Aa A/a C/c B/b

Bb B/b A/a C/c

Cc C/c B/b A/a

Dyn11

Aa A/a B/b C/c

Bb B/b C/c A/a

Cc C/c A/a B/b

Dyn11 vector group. These results are highlighted in Table A.2.

A.6.3 Low Voltage Winding End to End Open Circuit FRA Test on
Dyn1 and Dyn11 Vector Group Transformers

This FRA test records the frequency response between each of the low voltage terminals
and the neutral connection. During the test, the remaining two low voltage terminals and
three high voltage terminals are left open circuit. The test is repeated for each phase. The
FRA testing circuit is of low impedance and as such, at low frequencies, the low voltage
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Figure A.7: Generic low frequency model representing a Capacitive Interwinding FRA
test of a Dyn connected transformer
X = FRA Input / Transformer HV terminal
x = FRA Output / Transformer LV terminal
n = Number of distributed winding sections
LX , LY , LZ = Distributed self inductance of HV windings
Lx, Ly, Lz = Distributed self inductance of LV windings
MXY , MXZ , MY Z = Mutual inductance between HV windings
CXx, CY y, CZz = Distributed HV to LV winding capacitances
iY 1 = Current into winding node 1 of HV winding Y
iY (n) = Current into winding node n of HV winding Y

star connected windings which have their terminals unconnected, can be neglected from
the model. The generic phase low frequency Dyn based transformer model is shown in
Figure A.10.

With reference to (A.6), (A.11) and (A.13) it is noted that the equivalent low frequency
inductance between the testing terminals is dominated by the windings on phase X, and
the most significant contribution is made by the high voltage winding as per (A.11). Based
on this result, the B phase to neutral test (Bn) on both the Dyn1 and Dyn11 vector groups
will have a smaller magnitude in the inductive roll off region of the frequency response
when compared to the An and Cn tests. The Bn test will also have a lower self resonant
frequency. These results can be observed in Figures A.11 and A.12. Table A.3 presents
the generic phase model phase reference for this test.
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Figure A.8: Capacitive Interwinding FRA test using a HP89410A Vector Analyser on a
1.3MVA 11kV/433V Dyn1. Tests between terminals A to a, B to b and C to c.

Table A.3: LV Winding End to End Open Circuit FRA test: Generic phase reference for
Figure A.10

Vector Group FRA Test (vINvOUT ) X/x Y/y Z/z

Dyn1

an A/a C/c B/b

bn B/b A/a C/c

cn C/c B/b A/a

Dyn11

an A/a B/b C/c

bn B/b C/c A/a

cn C/c A/a B/b

A.7 Conclusion

In this appendix we developed simple generic phase models for the physical interpretation
of low frequency FRA results for distribution transformers with different vector groups.
We have shown that the influence of inductive disparity on FRA is dependent upon the
transformer connection and testing topology. More specifically, the FRA response differ-
ences between a Dyn1 and a Dyn11 connected transformer are explained, contributing to
the research area of transformer frequency response interpretation.
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Appendix B

Eddy Current Losses in the Winding

In Section 3.4.1 we made the assumption that eddy current based losses in the winding
are small relative to core losses and can therefore be neglected. This appendix justifies
this assertion.

In Section 6.4 it was shown using the Dowell Method [42, 48] that the AC resistance
due to skin effect can be estimated from,

Rse =
Rdcξ

2

[
sinh ξ + sin ξ
cosh ξ − cos ξ

]
, (B.1)

where
ξ =

d
√
π

2δ
,

d is the conductor diameter and
δ =

1√
πfµσ

,

is the skin depth, f the frequency in Hz, and the permeability and conductivity of the
conductor material is given by µ and σ respectively.

Similarly for proximity effect, the AC resistance for the mth layer is,

Rpe =
Rdcξ

2

[
(2m− 1)2 sinh ξ − sin ξ

cosh ξ + cos ξ

]
. (B.2)

An orthogonal relationship exists between skin and proximity effects [85]. As a result,
the two effects can be decoupled and an estimate for the total eddy current losses can be
determined through the addition of both effects (B.1) and (B.2), hence

Rac = Rse +Rpe . (B.3)

With reference to (B.1), (B.2) and (B.3), the winding loss can be estimated for the
combined influence of proximity and skin effect. These losses are calculated for the
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Figure B.1: Estimated AC Resistance for the 200 turn single layer test bed winding. a)
Total AC Resistance, b) Skin Effect Resistance, c) Proximity Effect Resistance.
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Figure B.2: Comparison between the estimated model of the magnetic loss resistance to
the calculated winding loss due to proximity and skin effect. a) Estimated model magnetic
loss resistance, b) Estimated winding AC resistance.

winding utilized in the test bed of Figure 3.6 for frequencies up to 1MHz. The estimated
results for the winding loss, Figure B.1, indicate only a modest increase in resistance with
frequency. With reference to equation (B.2), it can be observed that proximity effect
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losses are dependent on the winding layer being considered. Since the test bed winding
was constructed as a single layer to limit low frequency resonant modes, an additional
effect was the minimisation of proximity effect losses.

In order to compare the estimated winding losses and the losses due to the core, it is
necessary to determine an estimate for the core losses. This is accomplished by extracting
the real component of the inductor impedance from the model estimate in Figure 3.12.
From (3.27),

R
′′

= wµ
′′
sL0 ,

where R′′ is the magnetic loss resistance. The magnetic loss resistance can then be
compared to the winding loss resistance, Figure B.2. Above a few kHz, the magnetic loss
resistance is orders of magnitude larger than the estimated winding contribution. The
significant difference in magnitude of the loss components indicates that it is appropriate
to consider the winding resistance negligible for this particular experimental configuration.
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Appendix C

Scattering Parameters

The voltage (current) of a signal has both a time and a space component. At lower
frequencies, or over small distances, we can neglect the spatial aspect. However at high
frequencies or over long distances, the spacial voltage (current) distribution must be
considered [74]. This is often referred to as transmission line effects. Essentially the
voltage and current can be considered as waves which travel in both directions [1].

Scattering parameters, or S parameters as they are commonly referred, are a useful
method for characterising a transmission line network [1]. With reference to Figure C.1,
the incident wave variables a1 and a2 are defined as,

a1 =
ei1√
Z0

, (C.1)

a2 =
ei2√
Z0

, (C.2)

where ei1 and ei2 are the incident voltage waves on the two port network with respect to
the source and the load respectively. Z0 is the transmission line characteristic impedance.
Similarly, the reflection wave variables b1 and b2 are defined as,

Two Port
Network

Z
S

v Z
L

a
1

a
2

b
1

b
2

Figure C.1: Two port network connected by transmission lines.
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b1 =
er1√
Z0

, (C.3)

b2 =
er2√
Z0

, (C.4)

where er1 and er2 are the reflection voltage waves on the two port network with respect
to the source and the termination respectively. The S parameter matrix of a two port is
given by,

S =

 S11 S12

S21 S22

 (C.5)

where,

S11 =
b1
a1
|a2=0 , (C.6)

S21 =
b2
a1
|a2=0 , (C.7)

S12 =
b1
a2
|a1=0 , (C.8)

S22 =
b2
a2
|a1=0 . (C.9)

S11 and S21 are determined by terminating the output port with the characteristic
impedance. This has the same effect as setting a2 to be zero since the matched load
will absorb all of the incident wave. Similarly, S12 and S22 can be determined by termi-
nating the input port with the characteristic impedance. This will have the same effect
as setting a1 to be zero.

As proposed in Chapter 3, the use of a network analyser facilitates a testing platform
that is capable of taking into account transmission line effects associated with the test
equipment. The network analyser was used in Chapter 3 to determine the parameter S21

which represents the forward voltage gain of the two port network.
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Appendix D

FEA Models

This appendix reproduces the two dimensional finite element analysis models which were
used to benchmark the accuracy of the transformer model estimates for a number of ca-
pacitance values in Chapter 9. The models are based upon the analytical calculations of
Section 6.5 and internal measurements taken directly from the transformer under con-
sideration. For example, for the HV to LV winding capacitance, a simple FEA model
is created which consists of two cylinders. The outside cylinder has a diameter equal to
the inside diameter of the HV winding and the inside cylinder has a diameter equal to
the outside diameter of the LV winding. Similar methods are used for the LV winding to
core capacitance, the interphase HV winding capacitance, and the HV winding to tank
capacitance. In each of these cases the region between the electrodes is assumed to be
air. For the winding “buckling” models, the HV to LV winding capacitance model was
recreated with an adjustable region between the two cylinders representing the neoprene
rubber insert and its material permittivity.
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air board

air
air

Figure D.1: FEA model for the high voltage to low voltage winding capacitance of the
1.3MVA 11kV/433V Dyn1 transformer.

air

air

board

air

Figure D.2: FEA model for the low voltage winding to core capacitance of the 1.3MVA
11kV/433V Dyn1 transformer.
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Figure D.3: FEA model for the interphase high voltage winding capacitance of the
1.3MVA 11kV/433V Dyn1 transformer.
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(a) (b)

Figure D.4: FEA model for the high voltage winding to tank capacitance of the 1.3MVA
11kV/433V Dyn1 transformer; (a) Outside limb, (b) Centre limb.
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air Board

air
air

Neoprene

Figure D.5: FEA model for the high voltage to low voltage winding capacitance of the
1.3MVA 11kV/433V Dyn1 transformer with 15% of the circumference influenced by “de-
formation”.

air Board

air
air

Neoprene

Figure D.6: FEA model for the high voltage to low voltage winding capacitance of the
1.3MVA 11kV/433V Dyn1 transformer with 25% of the circumference influenced by “de-
formation”.
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